

GEOTECHNICAL DESIGN REPORT FOR LANDSLIP MITIGATION

Location Client NGS Ref Date

Report prepared by Authorised for NGS by 1A Seaview Road, Paihia Jane Banfield 0213 11 March 2022

Rebekah Buxton David Buxton

Table of Contents

1. INTRODUCTION & SCOPE	1
2. BACKGROUND	1
3. SITE DESCRIPTION	1
3.1. PROPERTY DESCRIPTION	1
3.2. EXISTING DWELLING FOUNDATIONS	3
4. GEOLOGICAL CONDITIONS	6
4.1. PUBLISHED GEOLOGY	6
4.2.2 AERIAL PHOTOGRAPH REVIEW	6
4.2. SITE INVESTIGATIONS	9
4.2.1. PREVIOUS INVESTIGATION (COOK COSTELLO 2021)	9
4.2.2. RECENT INVESTIGATION (NGS 2022)	9
4.3. SUBSOIL CONDITIONS	9
4.3. SUBSOIL CONDITIONS 4.4. GROUNDWATER	9
4.3. SUBSOIL CONDITIONS	
 4.3. SUBSOIL CONDITIONS	
 4.3. SUBSOIL CONDITIONS	
 4.3. SUBSOIL CONDITIONS 4.4. GROUNDWATER. 5. REMEDIATION DESIGN 5.1. GENERAL 5.2. DESIGN PHILOSOPHY 5.3. SITE SEISMIC CHARACTERISTICS 	
 4.3. SUBSOIL CONDITIONS 4.4. GROUNDWATER. 5. REMEDIATION DESIGN 5.1. GENERAL 5.2. DESIGN PHILOSOPHY 5.3. SITE SEISMIC CHARACTERISTICS 5.4. COASTAL REGRESSION 	
 4.3. SUBSOIL CONDITIONS 4.4. GROUNDWATER. 5. REMEDIATION DESIGN 5.1. GENERAL 5.2. DESIGN PHILOSOPHY 5.3. SITE SEISMIC CHARACTERISTICS 5.4. COASTAL REGRESSION 5.5. NUMERICAL SLOPE STABILITY ANALYSIS 	
 4.3. SUBSOIL CONDITIONS 4.4. GROUNDWATER. 5. REMEDIATION DESIGN 5.1. GENERAL 5.2. DESIGN PHILOSOPHY 5.3. SITE SEISMIC CHARACTERISTICS 5.4. COASTAL REGRESSION 5.5. NUMERICAL SLOPE STABILITY ANALYSIS 5.6. WALL DESIGN. 	
 4.3. SUBSOIL CONDITIONS 4.4. GROUNDWATER. 5. REMEDIATION DESIGN 5.1. GENERAL 5.2. DESIGN PHILOSOPHY 5.3. SITE SEISMIC CHARACTERISTICS 5.4. COASTAL REGRESSION 5.5. NUMERICAL SLOPE STABILITY ANALYSIS 5.6. WALL DESIGN 5.7. DWELLING UNDERPINNING DESIGN 	
 4.3. SUBSOIL CONDITIONS 4.4. GROUNDWATER. 5. REMEDIATION DESIGN 5.1. GENERAL. 5.2. DESIGN PHILOSOPHY 5.3. SITE SEISMIC CHARACTERISTICS 5.4. COASTAL REGRESSION 5.5. NUMERICAL SLOPE STABILITY ANALYSIS 5.6. WALL DESIGN 5.7. DWELLING UNDERPINNING DESIGN 5.8. SAFETY IN DESIGN. 	
 4.3. SUBSOIL CONDITIONS	

APPENDIX A – Construction Drawings
APPENDIX B – Site Investigation Logs
APPENDIX C – Stability Analysis Results
APPENDIX D – Retaining Wall Analysis
APPENDIX E – Memorandum and Producer Statement
APPENDIX F – Property Title
APPENDIX G – Structural Design Package

1. Introduction & Scope

Northland Geotechnical Specialists Ltd (NGS) was engaged by Jane Banfield to undertake subsoil investigations, assess landslip movement and provide a design of landslide remediation works at 1A Seaview Road, Paihia. The scope of works comprises:

- 1) Visual assessment of damage;
- 2) Review of investigation completed by others;
- 3) Undertake subsurface investigations;
- 4) Geomorphic assessment of the site and surrounding area from LiDAR terrain models and historic aerial photographs;
- 5) Stability modelling to assess the landslip and remedial design measures;
- 6) Retaining wall analysis to design remedial works; and
- 7) Preparation of design drawings for the proposed terraced retaining walls.

This report is suitable to support a Building Consent application to Far North District Council (FNDC).

2. Background

A landslide has occurred on the subject property located adjacent to the southern side of the dwelling and the southern property boundary. The landslide occurred in February 2021 during intense rainfall in the Bay of Islands area. It is proposed to construct a system of two retaining walls to stabilise the land supporting the dwelling and reinstate the amenity of the land to the south of the dwelling. The lower (southernmost) retaining wall will facilitate creation of a stable platform from which to construct the upper (northernmost) wall. Underpinning of exposed and inadequate foundations is proposed as part of this works. The work will allow for extension of the existing concrete surfaced accessway further to the south. SCS Structures has completed the structural component of this design work. This report and drawings should be read in conjunction with the SCS Drawings SK-SE-000 to -003.

3. Site Description

3.1. Property Description

The subject property is legally described as Lot 2 DP 124280 and covers an approximate area of 1105m². The site is and irregular pentagon in shape, being approximately rectangular at the southern end with dimensions of approximately 28m (E-W), 26m along the eastern boundary, 31m along the western boundary and extending to a triangular point centrally at the northernmost point at a maximum length of 47m.

The property has a total change in elevation of approximately 7m with a maximum elevation of centrally on the eastern boundary and a minimum in the north eastern corner of the site. The property has two distinct typically level terraces. The elevation drops steeply beyond the property boundaries to both the east (up to 40°) and south (up to 45°) towards the foreshore.

The property is accessed by a long driveway from Seaview Road at the southwestern corner. The property is bound by a vacant, grassed site (formerly a hotel) to the west, neighbouring residential properties to the far north and the foreshore to the east and south. The land to the north, east and south is vegetated with trees.

The dwelling with attached deck on the eastern side is located at the southern end of the site and has been constructed over several additions and alterations varying between one to three levels.

The landslide which occurred in February 2021 is located at the eastern end of the southern edge of the dwelling on the steep slope to the south. The landslide is steep and shallow (<1m deep). Shallow dwelling foundations have been exposed. A large tree to the west of the slip has previously been cut down, with the remaining tree stump also causing tension in the area around the foundations. (Ref Photo 1 below).

Photo 1: View to west along southern edge of dwelling showing exposed shallow foundation (right) and tree stump (left)

A walkover of the foreshore indicates outcrops of slightly to moderately weathered intact greywacke rock are present at the base of the slopes, as shown in Photo 2, below.

Photo 2: View to east along the base of the southern slope

1. Introduction & Scope

Northland Geotechnical Specialists Ltd (NGS) was engaged by Jane Banfield to undertake subsoil investigations, assess landslip movement and provide a design of landslide remediation works at 1A Seaview Road, Paihia. The scope of works comprises:

- 1) Visual assessment of damage;
- 2) Review of investigation completed by others;
- 3) Undertake subsurface investigations;
- 4) Geomorphic assessment of the site and surrounding area from LiDAR terrain models and historic aerial photographs;
- 5) Stability modelling to assess the landslip and remedial design measures;
- 6) Retaining wall analysis to design remedial works; and
- 7) Preparation of design drawings for the proposed terraced retaining walls.

This report is suitable to support a Building Consent application to Far North District Council (FNDC).

2. Background

A landslide has occurred on the subject property located adjacent to the southern side of the dwelling and the southern property boundary. The landslide occurred in February 2021 during intense rainfall in the Bay of Islands area. It is proposed to construct a system of two retaining walls to stabilise the land supporting the dwelling and reinstate the amenity of the land to the south of the dwelling. The lower (southernmost) retaining wall will facilitate creation of a stable platform from which to construct the upper (northernmost) wall. Underpinning of exposed and inadequate foundations is proposed as part of this works. The work will allow for extension of the existing concrete surfaced accessway further to the south. SCS Structures has completed the structural component of this design work. This report and drawings should be read in conjunction with the SCS Drawings SK-SE-000 to -003.

3. Site Description

3.1. Property Description

The subject property is legally described as Lot 2 DP 124280 and covers an approximate area of 1105m². The site is and irregular pentagon in shape, being approximately rectangular at the southern end with dimensions of approximately 28m (E-W), 26m along the eastern boundary, 31m along the western boundary and extending to a triangular point centrally at the northernmost point at a maximum length of 47m.

The property has a total change in elevation of approximately 7m with a maximum elevation of centrally on the eastern boundary and a minimum in the north eastern corner of the site. The property has two distinct typically level terraces. The elevation drops steeply beyond the property boundaries to both the east (up to 40°) and south (up to 45°) towards the foreshore.

The property is accessed by a long driveway from Seaview Road at the southwestern corner. The property is bound by a vacant, grassed site (formerly a hotel) to the west, neighbouring residential properties to the far north and the foreshore to the east and south. The land to the north, east and south is vegetated with trees.

The dwelling with attached deck on the eastern side is located at the southern end of the site and has been constructed over several additions and alterations varying between one to three levels.

The landslide which occurred in February 2021 is located at the eastern end of the southern edge of the dwelling on the steep slope to the south. The landslide is steep and shallow (<1m deep). Shallow dwelling foundations have been exposed. A large tree to the west of the slip has previously been cut down, with the remaining tree stump also causing tension in the area around the foundations. (Ref Photo 1 below).

Photo 1: View to west along southern edge of dwelling showing exposed shallow foundation (right) and tree stump (left)

A walkover of the foreshore indicates outcrops of slightly to moderately weathered intact greywacke rock are present at the base of the slopes, as shown in Photo 2, below.

Photo 2: View to east along the base of the southern slope

3.2. Existing Dwelling Foundations

The dwelling onsite has been developed in several phases, with extensions to, then significant renovations of, the original dwelling. Along the southeast side of the dwelling, where the slip and proposed retaining walls are located, the foundations appear to have been constructed in four or five phases with the original dwelling having been set back from the slope. A brief description of the dwelling, based on plans and calculations held on the FNDC property file is below.

The original dwelling onsite was constructed around or soon after 1975. Dwelling plans are not held on the FNDC file however structural engineering design calculations¹ indicate the main structural form. The dwelling was of two-level concrete construction with the lower level being a part basement and having an upslope concrete block retaining wall. The upper level has a unispan type floor, including a cantilevered terrace. A garage was attached to the upper level of the dwelling with an on-grade floor, upslope of the concrete retaining wall. The roof was of a flat nature with timber truss construction. The original dwelling appears to have been set back from the landslip area. The main dwelling structural form is shown in Figure 3-1 below.

Figure 3-1: Main dwelling form from 1975 structural design calculations. The section is a SW-NE direction.

Plans from 1978² indicate the original garage may have been converted to a living space and a new garage was constructed to the southeast of the original garage. The new garage floor has been designed to cantilever out over the top of the slope to the east of the dwelling, with a footing supported by a row of min. 1200mm deep piles. This new garage forms the structure directly adjacent to the southern portion of the slope. The design cross section is shown in Figure 3-2 below.

¹ Tapper Cotter Brown and Partners, Noon House, Structural Calculations & Design Certificate, September 1975.

² Proposed Garage for Mr and Mrs N Noon off Seaview Rd in Paihia, Feb 1978, Brown & Thompson Consulting Engineers, Plans, elevations and structural details.

Figure 3-2: 1978 garage floor and foundation details. The cantilevered portion of floor overhangs the southern portion of the slope where new retaining walls are proposed.

Plans from 1983³ indicate a new upper-level study was added directly above the slip area. The upper level study was of timber construction. A concrete floor slab with shallow footings is shown below, separated from the main dwelling structure. This extension likely forms the foundations directly above the slip area which are most at risk. The 1983 plans don't show the slope proximity and it is inferred the extension extended onto the slope area, with foundations likely amended onsite. The cross section through the extension is shown in Figure 3-3 below.

Figure 3-3: 1983 extension to form an upper-level study. The section is directly above the slip area however the section does not show the slope. The outer (right side of section) foundations extend over the slope crest and were likely adapted onsite.

Plans from 2001⁴ indicate the dwelling was significantly renovated with new decks/terraces and new architectural facades. As part of this work the lower level of the extension in Figure 3-3 has been converted to a studio, the gap between the dwelling and 1983 ground slab infilled to form a new hall

³ Proposed Study for Mr and Mrs Couch off Seaview Road in Paihia, sheets 1 to 3, March 1983,

⁴ Architectural Design, Banfield House Alteration, Paihia, July 2001, 5 Pages, Stamped approved by FNDC BC 20020208.

and a new lower-level area constructed to the south, forming a new bathroom. The lower-level terrace to the north has also been re-constructed. The layout of the extensions/renovations of the lower level directly above the slope/slip area are shown in Figure 3-4 below.

Figure 3-4: 2001 plan of extensions/renovations. The slip and proposed retaining walls are immediately to the right of the building footprint. The Studio appears to be the 1983 extension floor slab. The bathroom is of new construction, including extending the concrete block retaining wall. The new bathroom floor slab, directly above the slope, is shown as having a 200 wide footing extending 400 into solid bearing elsewhere in the drawing set.

A sketched structural detail⁵ from 2001 suggests a single 3m deep 400mm diameter pile may have been installed to the northeast of the studio and under the terrace shown in Figure 3-4.

Based on the information in the FNDC property file it appears foundations of the lower level adjacent to the slip area are typically shallow and not specifically designed to resist slope movement, except for the single 3m deep underpinning pile shown under the terrace. To the southwest, where there is no lower level adjacent to the slope, a cantilevered concrete slab dating from approximately 1978 exists with plans showing it is supported by approx. 1200mm deep piles.

⁵ Fraser Thomas Ltd, underpinning detail, signed by Roger Toplis 10/08/01

4. Geological Conditions

4.1. Published Geology

The published geology⁶ indicates that the subject property is underlain by Waipapa Group Sandstone and Siltstone. This typically comprises massive- to thin-bedded, lithic volcaniclastic metasandstone and argillite with tectonically enclosed basalt, chert and siliceous argillite. The Waipapa Group is considered to be basement terrane and the main rock type is likely to be greywacke.

The published geology is shown in Figure 4-1 below, noting that the coastal boundary is offset in this location.

Figure 4-1 – Published Geology⁶ on 2018 NRC LiDAR DEM

4.2.2 Aerial Photograph Review

Review of historic aerial photographs and present day images⁷ has been completed, as well as a selection in stereopairs.

- In 1953 the properties to the west of the subject site have been developed. The subject site is tree covered and undeveloped. There are some large trees along the southern slope.
- By 1972 the subject site has been cleared across the central and northern area. A cleared track is visible across the northern end of the property leading down to the beach. The structure present in1953 on the property to the west of the site has been removed and new structures. The existing access way from Seaview Road is visible along the southern end of the neighbouring properties. The accessway does not yet extend to the subject property.
- By 1981 the dwelling on the subject property has been constructed on the south eastern corner of the site above the steep slopes. Some landscaping of the area to the north of the

⁶ Edbrooke, S.W.; Brook, F.J. (compilers) 2009: Geology of the Whangarei area. Institute of Geological & Nuclear Sciences 1:250,000 geological map 2. 1 sheet + 68 p. Lower Hutt, New Zealand. GNS Science.

⁷ Historical Photographs sourced from Retrolens.nz, photographs dated 1953, 1972, and 1981. Google Earth pro aerial photography dating between 2004 and 2021.

dwelling has been completed. The structure to the west of the subject property has been extended to the north.

- In 2004 the footprint of the subject dwelling has been altered with extensions to both the west and south east. The structures on the neighbouring properties on the west of the site have been completely removed and replaced with a hotel complex development including carpark and swimming pool.
- By 2016 the western neighbouring property has been cleared and is in grass. There is little change noted between the 2016 and present day images.

There is little observed movement of the slopes to the south or east of the property however tree cover has obscured visibility.

4.2.1. Previous Investigation (Cook Costello 2021)

Investigations were completed by Cook Costello/Geocivil in July and August 2021. The investigations are presented in the Cook Costello Geotechnical Factual Report⁸ and Land Damage Assessment Report⁹. Investigations comprised:

- 7No. Hand augered boreholes (HA2 HA8) to 0.6m 2.2m depth
- 9No. Scala Penetrometer tests (SP1 SP8 & SP6a) to effective refusal (>10 scala blows/50mm penetration)
- One machine drilled borehole (MBH01) to a depth of 11.5m. SPT measurements were taken at regular intervals down the depth of the borehole. An inclinometer was installed in the borehole on completion.

Previous Cook Costello investigation locations are shown on *Figure 101 – Site Investigation Plan* presented in Appendix A. Cook Costello investigation logs are presented in Appendix B.

4.2.2. Recent Investigation (NGS 2022)

Recent site investigations were completed by a geotechnical engineer from NGS on 13 January 2022. The investigations comprised two hand augered boreholes (HA9 – HA10) with scala penetrometer testing completed from the base of the borehole to effective refusal (>20 scala blows/100mm penetration).

The exposed dwelling foundations along the southern side of the dwelling were probed with a gum spear to ascertain existing embedment depth.

Investigation locations are indicated on *Figure 101 – Site Investigation Plan* in Appendix A, and recent hand augered borehole logs are presented in Appendix B.

4.3. Subsoil Conditions

Fill was identified beneath the site next to the dwelling (HA9) to a depth of 0.8m. The fill comprised loose, reworked, likely site won, residual soils.

Beneath the fill, and in the other hand augered boreholes the site is underlain by residual soils of greywacke comprising silty clay/clayey silt with occasional trace sand and gravel and trace organics (rootlets) in the upper layers. The residual soils are typically stiff to hard, orange-brown, moist and of low plasticity. Undrained shear strength measurements in the residual soils are typically between 90-200kPa with one outlier of 45kPa at a depth of 0.5m in HA4. One SPT test conducted at a depth of 1.5m in MBH01 returned a value of N=17. A void was identified at a depth of 1.1 - 1.5m in HA4 and loose/"voidy" material was inferred in HA9 to a depth of 1.8m. It is inferred that this is a tension zone in the area of the felled tree identified in Section 3 (ref Photo 1), above.

The investigations indicate a weathering profile of greywacke decreasing with depth. Scala penetrometer measurements increased with depth from the base of the hand augered boreholes to

⁸ Cook Costello report for Jane Banfield, *Geotechnical Factual Report; 1A Seaview Road, Paihia*, Project Number: 16057-001, Date: 11/01/2022.

⁹ Cook Costello report for Jane Banfield, *Land Damage Assessment; 1A Seaview Road, Paihia*, Project Number: 16057-001, Date: 06/10/2021.

effective refusal to the scala (>10 scala blows/50mm penetration and >20 scala blows/100mm penetration). Refusal to the scala is inferred to be at the approximate depth of change from highly to moderately weathered greywacke. SPT results typically increased with depth to N>50 from a depth of 8m. N>50 is inferred to be at the approximate depth of change from moderately weathered to slightly weathered/unweathered greywacke.

4.4. Groundwater

Groundwater was not identified during or on completion of the investigations.

5. Remediation Design

5.1. General

The nature and continuity of the subsoil conditions onsite have been inferred from nine hand augered boreholes, 10 scala penetrometer tests and one machine drilled borehole at discrete locations. Two of the hand augered boreholes and scala penetrometer tests were undertaken by NGS with the rest completed by others. It must be appreciated that actual subsoil conditions could differ from those inferred. If the subsoil conditions differ in any way from those described in this report is it essential that we be contacted.

5.2. Design Philosophy

The landslide is occurring on an over steepened slope with dwelling loads and fill placed at the crest, in shallow residual soils of the Waipapa Formation (Greywacke). The absence of settlement damage to the dwelling suggests that dwelling foundations have not been undermined by the landslide however the soils providing passive support have evacuated downslope, exposing the foundations. Furthermore the foundations are not of a type and standard appropriate for a dwelling on the crest of a coastal cliff. A large tree near the crest of the slope and in proximity to foundations has recently been felled. The stump is still present and the soil in the area is seen to be in tension with voids forming as the organic material decomposes and the tree pulls away. Access to the site limits the size of plant and construction materials. Accordingly, the following design philosophy has been adopted:

- The landslide is assessed to be shallow based on visual observations, subsoil investigations showing increasing strength and decreasing weathering with depth, and the occurrence immediately following an extreme rainfall event. Although some of the movement may have occurred unnoticed over a longer period.
- 2) The site investigation clearly indicates better material is present with increasing depth.
- 3) A system of two terraced retaining walls has been selected. The lower wall will provide global stability to the site and retain some imported fill immediately behind it to provide a level area to improve amenity and safety and allow progressive construction access. The upper wall will be constructed in close proximity to the southern wall of the dwelling to provide passive support to the exposed foundations as well as limit the required height of the lower wall. The foundations will be underpinned as the construction advances (design undertaken by others).
- 4) Construction will commence at the level concrete accessway at the south western corner of the property to prepare a stable and level platform. Construction will progress to the east along the length of the walls as a stable platform is formed to construct the next length.

- 5) The existing felled tree stump shall be removed as part of the construction works. The void this creates should be backfilled with appropriate, well compacted fill material. The methodology of removing the tree stump requires construction of both the lower and upper wall and likely burial of the tree stump to allow construction of the full length of wall and underpinning prior to removal. Over excavation of the upper wall to account for the stump removal has been assessed in this zone.
- 6) The lower wall has been designed to tolerate an additional 1.0m retained height to account for future evacuation of soils downslope of the wall. This allows for complete evacuation of all residual soil (based on depth of soil in HA10) and the assessed coastal regression (Ref Section 5.4, below).
- 7) The landslip surface is within the residual soils. Back analysis of the assumed pre landslide slope was undertaken using the Rocscience software Slide 2.0. Soil/rock parameters were selected from the back analysis and correlations with the measured in-situ strengths during investigation.
- 8) Pile retaining wall analysis (Wallap) has been used to assess pile structural actions and check the adopted minimum pile embedment provides adequate passive resistance.
- 9) Minimum design Factor of Safety (FoS) values of 1.5 for static/design groundwater, 1.3 for elevated groundwater and 1.1 for seismic have been adopted.
- 10) The concrete accessway is to be extended from its present location to the boundary. As such there will be no upper wall. This results in a larger retained height at this end of the wall. In the case of future evacuation of soils in front of the wall due to coastal regression the resulting estimated deflection is greater than typically acceptable and the factor of safety about the pile toe is slightly less than the criteria adopted along the rest of the wall chainage. This is considered to be generally acceptable due to the offset from the dwelling. If in the future, the downslope evacuation of soils or deflection at the top of the wall is realised anchoring of the pile head or other remediation may be adopted at that stage.
- 11) To facilitate the extension of the accessway, the three western most upper wall piles will be abandoned and three extra piles linking the western ends of the two walls will be constructed at completion of the works to form the level accessway.

5.3. Site Seismic Characteristics

In accordance with NZS 1170.0¹⁰ the residential dwelling and supporting structures is considered to be an Importance level 2 (IL2) structure. Return periods for limit state design events for an IL2 structure are Serviceability Limit State (SLS) 1/25 years and Ultimate Limit State (ULS) 1/500 years. Based on the subsoil conditions observed the site is considered to be a Class C- shallow site in accordance with NZS 1170.5¹¹. This classification is based on the identification of greywacke rock at shallow depths.

Ground motion inputs from Table A1 of the NZGS/MBIE Earthquake Geotechnical Engineering Practice Module 1 have been adopted for the purpose of geotechnical assessment within this report and are summarised in Table 5-1.

¹⁰ Standards New Zealand, 2004. Structural Design Actions Part 0: General Principles. NZS 1170.0:2002

¹¹ Standards New Zealand, 2004. Structural Design Actions Part 5: Earthquake Actions. NZS 1170.5:2004

Table 5-1: Site seismic parameters

Design Level		el	Annual probability of exceedance	Peak Ground Acceleration (PGA)	Earthquake Magnitude (Mw)	
SLS			1 in 25 years	0.03	5.8	
ULS			1 in 500 years	0.13	5.8	
Minimum seismicity ¹		eismicity ¹	Less than 1 in 500 years	0.19	6.5	
Notes	1	Minimum level of seismicity for design is recommended in areas of low seismicity and comprises a				
		magnitude 6.5 earthquake at 20km distance				

In accordance with NZGS/MBIE Earthquake Geotechnical Engineering Practice Module 6, Table 5-2, the retaining walls presented in this report are considered to be Case 3: Downslope and supporting building foundations. As such, the PGA for pseudo-static design of retaining walls is reduced by a factor (W_d) of 0.5, i.e. PGA_{min seismicity} of 0.095g is adopted. This factor accepts that some displacement under a seismic design scenario is typically acceptable.

5.4. Coastal Regression

The greywacke foreshore will gradually retreat due to coastal erosion, resulting in slips on the slopes above. The rate of foreshore regression is not readily apparent from review of aerial photographs dating from 1951 (i.e. 71 years ago) due to tree cover of the slopes however it does not indicate rapid coastal erosion. The rate of foreshore regression is limited by both the strength of the greywacke rocks and the lower energy coastal environment given the relatively sheltered setting of the southern slope (i.e. it is not exposed to open ocean). No significant preferential erosion features likely to accelerate average coastal regression rates (e.g. sea caves) were observed. An average long-term coastal regression of 1.0m per 100 years is considered appropriate for the southern slope. We note that coastal regression is not consistent and slope regression often occurs as intermittent landslip events rather than as a continuous process.

An assessed regression line is presented on *Figure SA-1: Section A – Coastal Regression*. The regression line assumes:

- 1. Coastal regression of 1.0m.
- 2. A long-term stable slope angle of approximately 45° (i.e. approximately parallel to the existing slope).

5.5. Numerical Slope Stability Analysis

Numerical slope stability analysis has been undertaken on Section A through the main body of the landslide (Section A, Ref *Figures SA & 2*, attached). The analysis was undertaken using the software package *Slide*-2018.8.031 provided by RocScience. The topography has been developed based on the site survey completed by Williams & King¹².

Groundwater has been modelled using an R_u coefficient for the less permeable residual soils and highly weathered greywacke. This develops a porewater pressure profile specific to each slip surface and is appropriate for the short term perched (transient) pore water pressures that are expected to develop following rainfall onsite and the groundwater flow conditions that will result due to the sloping topography. Groundwater in the moderately weathered greywacke is modelled by a piezometric surface at the assumed interface between the highly weathered and moderately

¹² Williams & King, *Slip Survey Lot 2 DP124280, Jane Banfield, Paihia*. Job No. 22451; File: Slip Survey, Sheet No. 1/4. Dated Dec 21.

weathered greywacke. The seismic case is considered to occur under design groundwater conditions.

The soil parameters adopted for wall design have been derived based on the site investigation and through back analysis of the existing landslide. The soil parameters are presented in Table 5-2 below.

Parameter	Fill	Residual soils	Highly weathered Greywacke	Moderately weathered Greywacke
Unit weight (kN/m ³)	18	18	19	20
Drained cohesion, c' (kPa)	2	6	10	20
Friction angle, φ' (deg)	28	32	34	37
R _u Coefficient ^a	0.05 [0.2]	0.1 [0.3]	0.05 [0.2]	N/A

Notes a Ru value for design groundwater [elevated groundwater]

The soil parameters determined from the back analysis were adopted for design of the wall at Sections A, B and C (Refer *Figures 2 – Site Plan, SA – Section A, SB – Section B & SC – Section C*). Results of the stability analyses are given in Table 5-3 below. A 10kPa surcharge was applied upslope of the upper wall to model loads arising from the dwelling and long term live load, noting that proposed underpinning works will minimise some of this applied load.

Table 5-3: Stability Analysis Results

Design Case		FoS	Target FoS	OK?
	Back analysis	0.92	1.0	Yes
	Design Groundwater	1.61	1.5	Yes
on A	Elevated Groundwater	1.46	1.3	Yes
Secti	Seismic	1.23	1.1	Yes

Notes a Design, Groundwater, Elevated Groundwater and Seismic analyses completed for 2No piles: Upper wall 4m length force upper wall, and Lower wall - 5m length. Shear force selected to force failure below toe of walls.

Results from the stability analysis are presented in Appendix C.

5.6. Wall Design

Geotechnical design of the wall has been undertaken using the software package *Wallap* Version 6.06, provided by Geosolve.

Three sections, A, B & C, along the chainage of the walls have been analysed. The sections are shown on Figure 2 – Site Plan and Figures SA, SB & SC presented in Appendix A.

Section A: Used for back analysis (ref Section 5.5 above). Retention in front of double level dwelling. Lowest point on lower wall resulting in maximum combined retained height. Underpinning of inadequate dwelling foundations above upper wall. Removal of tree stump between upper and lower walls resulting in potential over excavation of upper wall.

Section B: Retention in front of single (upper) level dwelling.

Section C: Lower wall only forming machine access from existing driveway to construction area. Maximum retained height for lower wall.

The following additional parameters as well as those shown in Table 5-2 were used in the wall analysis. The wall-soil interface friction value has been adopted as $3_{3}\phi$ on the active side and $3_{4}\phi$ on the passive side.

Parameter	Light weight fill	Fill/ Loose soils	Residual soils	Highly weathered Greywacke	Moderately weathered Greywacke
Unit weight (kN/m³)	16	18	18	19	20
Drained cohesion, c' (kPa)	0	1	6	10	20
Friction angle, φ' (deg)	42	30	30	34	37
Modulus of Elasticity, E'(MPa)	20	20	25	50	200
Poisson's ratio	0.2	0.2	0.3	0.2	0.2

Table 5-3: Additional soil parameters for wall design

Surcharges are applied in the model to account for the dwelling, construction loads and the effect of the upper wall on the lower. Three design cases for the lower wall have been assessed:

- a) Short term load condition of 13T excavator applying asymmetrical surcharge behind the lower retaining wall (i.e. during pile holes excavation and construction with higher loads on one track). k₁ (timber strength duration factor) in bending and shear capacity of timber pile = 1.0.
- b) Medium term load condition of 13T excavator stationary above lower retaining wall. k_1 factor in bending and shear capacity of timber pile = 0.8.
- c) Long term post construction conditions with 2.5kPa live load above the lower retaining wall. k_1 factor in bending and shear capacity of timber pile = 0.6.

Section A

The design staging for analysis of the Section A lower wall is as follows:

- 0. Model set up includes 9m deep pile modelled as a 400mm diameter SED timber pile spaced at 1.3m c/c (2.5xD). A groundwater level within the moderately weathered Greywacke is adopted. The soil profile from the stability model is adopted.
- 1. Apply surcharge at RL 10.0m located 3.66m behind top of wall to model the upper retaining wall.
- 2. Apply surcharge at RL 10.0m located 4.5m behind top of wall to model additional soil above upper wall, beneath dwelling and dwelling dead load.
- 3. Apply load at RL 8.67m (i.e. 2/3 retained height below top of wall) to model water pressure.
- 4. Excavate to RL 8.0m (i.e. 2.0m deep excavation) to existing ground level.
- 5 & 6. Apply surcharge representing load case a).
- 7 & 8. Remove surcharge representing load case a).
- 9 & 10. Apply surcharge representing load case b).
- 11 & 12. Remove surcharge representing load case b).
- 13. Apply surcharge representing load case c).

This report may not be read or reproduced except in its entirety.

- 14. Excavate to RL 7.0m (i.e. an additional 1.0m evacuation of soils of downslope soils over the long term).
- 15. Apply load at RL 8.67m (i.e. 2/3 retained height below top of wall) to model seismic load.

The design staging for analysis of the Section A upper wall is as follows:

- 0. Model set up includes 6.0m deep pile modelled as a 300mm diameter SED timber pile spaced at 1.0m c/c. A groundwater level within the moderately weathered Greywacke is adopted. The soil profile from the stability model is adopted.
- 1. Apply surcharge at RL 12.47m immediately behind the wall to model the dwelling.
- 2. Apply load at RL 10.82m (i.e. 2/3 retained height below top of wall) to model possible transient water pressure.
- 3. Excavate to RL 10.0m (i.e. 2.47m deep excavation).
- 4. Excavate to RL 9.0m (i.e. potential over excavation during removal of tree stump).
- 5. Fill behind wall to RL 10.0m.
- 6. Apply load at RL 10.82m (i.e. 2/3 retained height below top of wall) to model seismic load.

Section B

The design staging for analysis of the Section B lower wall is as follows:

- 0. Model set up includes 9m deep pile modelled as a 400mm diameter SED timber pile spaced at 1.3m c/c (2.5xD). A groundwater level within the moderately weathered Greywacke is adopted. The soil profile from the stability model is adopted.
- 1. Apply surcharge at RL 11.7m located 3.66m behind top of wall to model the upper retaining wall.
- 2. Apply surcharge at RL 11.7m located 3.66m behind top of wall to model slope aboe retaining wall.
- 3. Apply surcharge at RL 11.7m located 5.8m behind top of wall to model additional soil above upper wall, beneath dwelling and dwelling dead load.
- 4. Apply load at RL 10.37m (i.e. 2/3 retained height below top of wall) to model water pressure.
- 5. Excavate to RL 9.7m (i.e. 2.0m deep excavation) to existing ground level.
- 6 & 7. Apply surcharge representing load case a).
- 8 & 9. Remove surcharge representing load case a).
- 10 & 11. Apply surcharge representing load case b).
- 12 & 13. Remove surcharge representing load case b).
- 14. Apply surcharge representing load case c).
- 15. Excavate to RL 8.7m (i.e. an additional 1.0m evacuation of soils of downslope soils over the long term).
- 16. Apply load at RL 10.37m (i.e. 2/3 retained height below top of wall) to model seismic load.

The design staging for analysis of the Section B upper wall is as follows:

- 0. Model set up includes 6.0m deep pile modelled as a 300mm diameter SED timber pile spaced at 1.0m c/c. A groundwater level within the moderately weathered Greywacke is adopted. The soil profile from the stability model is adopted.
- 1. Apply surcharge at RL 13.3m immediately behind the wall to model the dwelling.
- 2. Apply surcharge at RL 13.3m immediately behind the wall to model the slope above the wall.
- 3. Apply load at RL 12.23m (i.e. 2/3 retained height below top of wall) to model possible transient water pressure.

- 4. Excavate to RL 11.7m (i.e. 1.6m deep excavation).
- 5. Apply load at RL 12.23m (i.e. 2/3 retained height below top of wall) to model seismic load.

Section C

The design staging for analysis of the Section C wall is as follows:

- Model set up includes 9m deep pile modelled as a 400mm diameter SED timber pile spaced at 1.25m c/c. A groundwater level within the moderately weathered Greywacke is adopted. The soil profile from the stability model is adopted. Lightweight fill (i.e. scoria, γ=16kN/m³) is modelled behind the wall.
- 1. Apply load at RL 13.63m (i.e. 2/3 retained height below top of wall) to model water pressure.
- 2. Excavate to RL 12.62m (i.e. 2.6m deep excavation) to existing ground level.
- 3 & 4. Apply surcharge representing load case a).
- 5 & 6. Remove surcharge representing load case a).
- 7 & 8. Apply surcharge representing load case b).
- 9 & 10. Remove surcharge representing load case b).
- 11. Apply surcharge representing load case c).
- 12. Excavate to RL 11.62m (i.e. an additional 1.0m evacuation of soils of downslope soils over the long term).
- 13. Apply load at RL 13.63m (i.e. 2/3 retained height below top of wall) to model seismic load.

The analysed shear force and bending moment loads for each design scenario are shown in Table 5-4 below. Expected top of wall displacements are also provided however it should be noted that the majority of deflection will be experienced under construction loads only. A load factor of 1.5 has been applied to the design loads.

Table 5-4: Pile design loads

				Lower wall ^a		Upper wall ^b
			Load case	Load case	Load case	
			a)Short term	b)Medium term	c)Long term	
	Design load based on	V* (kN/pole)	65.3	64.7	53.8 [36.0]	65.6 [46.5]
	output from Wallap	M* (kNm/pole)	130.7	129.9	112.9 [75.8]	58.7 [41.9]
tion A	Timber Pole Capacity (with appropriate k1 value)	φV _n (kN/pole)	237.5	190.0	142.5 [237.5]	93.7 [156.2]
Sec		φM _n (kNm/pole)	188.8	151.1	113.3 [188.8]	59.6 [98.0]
	Top of wall deflection (mm)		106	38	41 [0]	23 (54 ^e) [58]
	Design load based on	V* (kN/pole)	94.4	66.3	64.5 [39.7]	7.2 [6.3]
	output from Wallap	M* (kNm/pole)	135.5	93.4	121.1 [75.5]	4.4 [3.8]
tion B	Timber Pole Capacity (with appropriate k1 value)	φV _n (kN/pole)	237.5	190.0	165.6° [237.5]	80.2 [133.6]
Sec		φM _n (kNm/pole)	188.8	151.1	136.7° [188.8]	47.8 [79.7]
	Top of wall deflection (mm)		44	45	27 [28]	4 [5]
	Design load based on	V* (kN/pole)	43.9	43.9	87.7 [69.8]	N/A
	output from Wallap	M* (kNm/pole)	95.6	95.0	121.9 [97.8]	N/A
tion C	Timber Pole Capacity (with appropriate k1 value)	φV _n (kN/pole)	237.5	190.0	171.2 ^c [237.5]	N/A
Sec		φM _n (kNm/pole)	188.8	151.1	142.1 ^c [188.8]	N/A
	Top of wall deflection (mm) ^f		74	42	42 [25]	N/A

Notes a Lower wall: 400mm SED timber poles at 1.3m c/c

b Upper wall: 300mm SED timber poles at 1.0m c/c

c An increase in diameter of 6mmm per m length has been allowed.

d Figure in square brackets denotes seismic loading case

e Over excavation deflection during tree stump removal, likely conservative as water pressure and live load surcharge applied during over excavation in analysis.

f Excessive deflection and FoS<2.0 with long term drop out in front of wall. Potential to anchor wall in the future if this is seen to occur.

g Lower wall deflection likely to occur during construction reducing its long term impact

The retaining wall analysis (Wallap) output and timber pole capacity design spreadsheets are presented in Appendix D.

Factor of safety at toe of wall decreases below 2.0 (Burland-Potts) and deflection at Section C (retaining accessway) is considered to be excessive during long term drop out in front of the wall due to coastal regression. Should drop out in front of the wall be observed to be occurring in the future, remediation could include installing anchors at the top of the piles to limit this deflection. The deflection of the wall is not considered to influence dwelling support.

5.7. Dwelling underpinning design

Vertical support of the eastern portion of the southern wall of the dwelling is not considered to be adequate. Underpinning piles have been designed to support this length of the dwelling. Design of the underpinning works has been completed by SCS Structures Ltd and the SCS drawings are attached in Appendix G. The structural underpinning works shall be undertaken in conjunction and concurrently with the remedial works presented in this report.

5.8. Safety in Design

The proposed retaining walls involve work on an existing landslide, significant retained heights with potential falls of up to 2.6m. The constructor shall ensure onsite worker safety and prevention of damage to the existing dwelling at all times.

Construction shall begin on a stable area on the accessway in the south western corner of the site. Construction shall be progressed eastwards along the wall chainage, ensuring the formed working platform is stable before progressing. The lower retaining wall has been designed assuming an excavator of 13T or less is used. The design surcharge should not be exceeded.

Excavation and retaining walls shall be subject to a specific job safety analysis (JSA) including but not limited to, restrictions during wet weather, delineation of unsafe/no entry zones, use of safety fencing and pre-entry inspections of any cut faces by site staff.

Cuts of up to 1.6m are required adjacent to the existing dwelling. The dwelling foundations have been deemed inadequate and support of the dwelling shall be maintained at all times. The upper wall will be constructed by top down methodology. No cutting down in front of the dwelling shall be undertaken prior to the pile be installed. Soil arching will be relied on during construction. Shotcrete facing below natural ground level shall be applied following construction of the walls.

6. Applicability

This report has been prepared for the soil use of our client, Jane Banfield and the Far North District Council with respect to Building Consent application for the particular brief and on the terms and conditions agreed with our client. It may not be used or relied on (in whole or in part) by anyone else, or for any other purpose or in any other contexts, without out prior written agreement.

The nature and continuity of the subsoil conditions onsite have been inferred from visual observations and two hand augered boreholes, as well as seven hand augered boreholes, nine scala penetrometer tests and one machine drilled boreholes (undertaken by others). It must be appreciated that actual subsoil conditions could differ from those inferred. If the subsoil conditions differ in any way from those described in this report it is essential that Northland Geotechnical Specialists Ltd be contacted.

Report prepared by:

Rebekah Buxton Geotechnical Engineer, BE Civil (Hons), MEngNZ

Authorised for Northland Geotechnical Specialists Limited by:

DS But

David Buxton Geotechnical Engineer, BE Civil (Hons), CPEng, CMEngNZ

ngs georpt_1aseaviewrd_jan22

Appendix A: A1. Construction Drawings

- NGS Figure 1 Location Plan
- NGS Figure 2 Site Plan
- NGS Figure 3 Lower Wall Set Out
- NGS Figure 4 Retaining Wall Elevation Lower Wall
- NGS Figure 5 Retaining Wall Elevation Upper Wall
- NGS Figure 6 Typical Section
- NGS Figure SA Section A
- NGS Figure SB Section B
- NGS Figure SC Section C

A2. Not for construction drawings

- NGS Figure 101 Site investigation Plan
- NGS Figure SA-1 Section A Coastal Regression

Project No. NGS 0213 Date 17/02/2022 By RB Figure No. 1 Revision 0

Project No. 0213	Date March 2022	Jane Banfield 1A Seaview Road, Paihia	FOR CONSTRUCTION This drawing is not to be used for construction unless si	igned as approved	N
Figure No. 4	Revision 0	Retaining Wall Elevation - Lower Wall	DS Button	Date 11/03/2021	North Ph: +64 2

UPPER RETAINING WALL - ELEVATION 1:100 at A3 H=V

Project No.	Date	Jane Banfield	FOR CONSTRUCTION		
0213	March 2022	1A Seaview Road, Paihia	This drawing is not to be used for construction unless si	igned as approved	
Figure No.	Revision		Signed	Date	
5	0	Retaining Wall Elevation - Upper Wall	DSISHTAN	11/03/2021	Nor
	Ŭ		Recount	11/03/2021	Ph: +6

Upper (RWUa)	Lower (RWL4&5)
2200	2000
3800	7000
300	400
600	600#
1000	1200
6000	9000

Upper (RWU2b)	Lower (RWL4)
1450	2200 (typically 2000)
4550	6800
300	400
600	600#
1000	1300
6000	9000

	Lower (RWL2)
HEIGHT	2600
NT	6400
MTER (SED)	400
SEMENT DIAMETER	550
RES	1250
LE LENGTH	9000

FNDC - Approved Building Consent Document - EBC-2022-1188/0 - Pg 34 of 129 - 01/04/2022 - TM

Hand augered borehole/scala penetrometer,

Machine drilled borehole, Cook Costello,

Hand augered borehole/scala penetrometer,

Scale 1:100 @ A3

Project No. NGS 0213 Date 23/02/2022 By RB Figure No. 101 Revision 0

Appendix B: Site Investigation Logs B1. Recent investigations (NGS)

• Hand auger borehole logs (HA9-HA10)

B2. Historical investigations (Cook Costello)

- Hand auger borehole logs (HA2 -HA8)
- Scala penetrometer logs (SP1 SP8)
- Machine drilled borehole log (MBH1)
| | NGS HAND AUGER LOG | | | | | | | | | | |
|---|--|--|---------|-----------|---|---|-------------------------|---|-----------------------------|--|--|
| Nort | hland Geotechnical Specialists | CLIENT: Jane Banfield
PROJECT: Geotechnical assess | nent | for land | Islide reme | diation | | JOB NO.:
0213 | | | |
| SIT
CO | E LOCATION: 1A Seavie
-ORDINATES: 1700034n | w Road, Paihia
nE, 6093978mN | | | E | LEVATION: Ground | START
END
LOGGI | DATE: 13/01/2022
DATE: 13/01/2022
ED BY: DB | | | |
| | MATE
(See Classificat | RIAL DESCRIPTION
ion & Symbology sheet for details) | SAMPLES | DEPTH (m) | LEGEND | SCALA PENETROMETER
(Blows / 100mm)
2 4 6 8 10 12 14 16 18 | VANE S
Vane:
ଜ୍ଙ୍ | SHEAR STRENGTH
(kPa)
NGS Vane 2 - 19mm
දු ශු බූ Values | WATER | | |
| ላይሚ - ለሚኮ preved ማሪሀበር II - 01/04/2022 - 11
 | Orange and light grey.
Dry; friable. Residual so
Silty CLAY; orange and
Stiff, moist to dry, low p
tension zone.
SILT, with some clay; li
Hard, moist, low plastic
Target lithology. Hard t
EOH: 2.20m | bils fill.
0.5m: Brown, white chips
0.8m: voids zone - tension from tree?
I light grey.
lasticity; loose/void feel to auger -
1.8m: harder to auger
ght grey and orange.
ity; Highly weathered Greywacke.
to auger. Dry on completion. | | | - - | 2 4 6 8 10 12 14 16 18
13
13
15
16
15
18
13
13
15
18
18
23 >>
REMARKS
e fall debris to 1.8m then competent residual | | 108
5
113
7
161
44
UTP
-
UTP
- | Groundwater Not Encountered | | |
| COKE-65 by Geroc T | | | | | | WATER | INVES | STIGATION TYPE | | | |
| Generated with | | | T | | | ✓ Standing Water Level ✓- Out flow ➢ In flow | | land Auger
est Pit | | | |

	IRS		HAND AUG	ER LOG		HOLE NO.: HA10	
Nort	thland Geotechnical Specialists	CLIENT: Jane Banfield	ssment for landslide re	mediation		JOB NO.: 0213	
SIT CO	TE LOCATION: 1A Seavie D-ORDINATES: 1700036m	w Road, Paihia E, 6093974mN		ELEVATION: Ground	START END LOGGE	DATE: 13/01/2022 DATE: 13/01/2022 DATE: 13/01/2022	
ONIT	MATEF (See Classificati	RIAL DESCRIPTION on & Symbology sheet for details)	SAMPLES DEPTH (m)	SCALA PENETROMETER (Blows / 100mm) 2 4 6 8 10 12 14 16 18	VANE S Vane: l ନ୍ କ୍ଟି	HEAR STRENGTH (kPa) NGS Vane 2 - 19mm දු දි දි Values	WATER
	Clayey SILT; brown. Very stiff to hard, dry; fr common roots.	iable (likely low - high plasticity),				UTP	t Encountered
	SILT, with some clay; lig Very stiff to hard, dry; fr	ght grey and orange. iable.			4	167 18 UTP	Groundwater No
	Refusal to auger. EOH: 1.00m			12 12 20 20 28 >> 27 >> 13 11 21 >> 25 >> 26 >>			
				WATER ▼ Standing Water Level ← Out flow ► In flow	INVES	TIGATION TYPE and Auger est Pit	

		GEO CI		ŀ	٩UG	ERł	IOL	ELO	OG			E:in	166 Bank Street, Whangarei, M:0276565226 fo@geocivil.co.nz
	La	b Job No.:	8020-1863				Borel	hole N	No.:	н	IA2/SP2	Sheet:	1 of 1
	Cli Jo	ent: b:	Cook Costello Geotechnical Investiç	ation			Hole D Coordi	epth: inates:	2.70	0 m		Date:	24/06/21
	Re Cli	port No.: ent Ref. No.:	W21-870 16057				Locatio	on:	1a \$	Seav	iew Road, Paihia	Ground Lo	evel:
4/2022 - TM			Geological Interpret	ation 2005	ncs	Legend	Depth (m)	Water	Relative Density	-25 ZN	Vane Shear Strength (Tested in accordance with NZGS Ar 9 10	kPa) g 2001	Samples
01/0		Silty TOPSOIL gravels up to 1	., traces of rootlets, tra 0mm, dark brown, mo	ces of subangular ist, low to moderate	OL	∾ ∿ ۲s∡ ,∞1							
² g 39 of 129 -		Clayey SILT, t traces of suba orangey mottli	races of rootlets, trace ngular gravels up to 10 ng, moist, low to mode	s of fine sands, mm, brown with rate plasticity	ML		 				•	y 154/29	
О. Е		Colour Change	e: dark brown		ML	* <u>*</u> *							
2022-1188/		SILT, some cla traces of grave	ay, friable, brown with o els up to 10mm, low pla	prangey mottling, asticity.	ML		 			Q	•	/ 99/11	
ed Building Consent Document - EBC-		Colour change	eval at 2.2m	ngey mottling.	ML	**************************************		Groundwater Not Encountered	_			∕ 256+ ∕ 256+	
FNDC - Approve							- 2.5 				Wotor	j	instion Type
Proc	S	-35.71821									vvater ▼ Standing Water Level	Hand	Auger
3S by Ge	E 174.32225 Note: All Scala Penetrometer readings taken below 1.5m from start depth are outside the scope of										Out flow → In flow	Hand (DCF	Auger + Scala
CORE-G	Note	e: Scala Penetrometer inter ntractor:	Equipment:			Recor	ded By	<i>'</i> :		Laboratory Technician:	Approved	/ Signatory:	
Produced with		Ge	ocivil	Hand Auger an	d Scala	9	Recor	J.H ded Da 24/06/2	H I te: 2021		Alex Millar Alex Millar	S:	an Kokich

		GEO CI		A	UG	ERł	IOL	ELO	OG			E:inf	166 Bank Street, Whangarei, M:0276565226 ō@geocivil.co.nz
	La	ab Job No.:	8020-1863				Boreł	nole N	No.:	Н	IA3/SP3	Sheet:	1 of 1
	Cli Jo	ient: b:	Cook Costello Geotechnical Investig	gation			Hole D Coordi	epth: nates:	3.6	5 m		Date:	06/07/21
	Re Cli	port No.: ient Ref. No.:	W21-870 16057				Locatio	on:	1a	Seavi	iew Road, Paihia	Ground Le	evel:
4/2022 - TM	:		Geological Interpre In accordance with NZGS	2005	ncs	Legend	Depth (m)	Water	Relative Density	-25 ZN	Vane Shear Strength (I Tested in accordance with NZGS At 9 10	kPa) Jg 2001	Samples
1/07		Clayey TOPS	OIL, traces of rootlets, moderate plasticity	traces of sands, dark	OL	∛Ω ΔΛ							
- Pg 40 of 129 - 0		CLAY, some s traces of rootle moist, brown,	ilt, traces of angular gr ets and roots, traces of moderate plasticity	avels upto 6mm, fine to coarse sands,	СН						• • • • • • • • • • • • • • • • • • •	×129/17	
BC-2022-1188/0		Clayey SILT, r gravels, red/br	ninor fine sands, trace own, moist, moderate	s of highly weathered plasticity	МН			sred	-		2 2 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	×162/8 ×108/29	
sument - El		Colour Chang	e: darker red		мн	· · · · · · · · · · · · · · · · · · ·		dwater Not Encounte			3 2 3 3 4 4 4 4 5	-210+	
FNDC - Approved Building Consent Doc		End of boreho	le (no retrieval)				- 2.5	Groun			Water	Investi	gation Type
Seroc	S	-35.29231									▼ Standing Water Level	Hand	Auger
GS by G	Note: All Scala Penetrometer readings taken below 1.5m from start depth are outside the scope of this										 ← Out flow ← In flow 	Hand	Auger + Scala)
CORE-	Cor	e: Scala Penetrometer inter ntractor:	pretation is not endorsed	Equipment:			Recor	ded By	:		Laboratory Technician:	Approved	Signatory:
Produced with		Ge	ocivil	Hand Auger and	l Scala	1	Recor	J.H/A.E ded Da 6/07/2	B/J.A I te: 2021		Alex Millar Alex Millar	S-	an Kokich

		GEO CIVIL	A	UG	ERł	IOL	E LC	DG			E:in	166 Bank Street, Whangarei, M:0276565226 fo@geocivil.co.nz
	La	ab Job No.: 8020-1863				Boreł	nole N	lo.:	H	A4/SP4	Sheet:	1 of 1
	CI Jo	lient: Cook Costello ob: Geotechnical Investiç	gation			Hole D Coordi	epth: nates:	2.5	5 m		Date:	06/07/21
	Re Cl	eport No.: W21-870 lient Ref. No.: 16057				Locatio	on:	1a :	Seavi	ew Road, Paihia	Ground L	evel:
22 - TM		Geological Interpret	tation 2005	ncs	egend	pth (m)	Nater	ve Density	-25	Vane Shear Strength (Tested in accordance with NZGS A 09 7 9 7 9 7 9 7 9 7 7 Scala Penetrometer	kPa) ug 2001	amples
1/20	I					De	_	Relati	NZS	S4402: 1988 Test 6.5.2 - Procedure 2 (blows / 50mm)	beak beak	ŭ
01/04	t	Clayey TOPSOIL, traces of rootlets, t brown, moist, moderate plasticity	traces of sands, dark	OL	v TS ≫ ⊅							
of 129 -		CLAY, some silt, minor fine-coarse sa moist, moderate plasticity	and, orangish brown,	СН					-	1	2	
Pg 41 c		CLAY, some silt, minor fine gravels (of sands, brown, moist, low plasticity	upto 10mm), traces						-		745/38	
88/0 -	I			CL						1	2	
2-11	I	SILT, minor fine gravels upto 5mm, s sand, brown, dry-moist, low plasticity	ome clay, traces of	ML	^к ж ж ж х			-		2	2	
202	I	CLAY, some silt, minor fine gravels (of sands, brown, moist, low plasticity	upto 10mm), traces	CL		- 1.0 -	p			•	, 3 /210+ 3	
с' ВС	I	Extremely weathered rock, light brow	'n		VOD		ountere			3	3	
ш	I	Volu			VO		lot Eno			3	3	
<u>nent</u>	I				VOID		vater N			5	7	
cun	I				VOID	1.5	iroundv			5 2	5	
Do	I	Extremely weathered rock, light brow End of Borehole (too firm to dig)	<u>′'n</u>							5	5	
sent	I									E	5	
suo	╀	-								Ę	5	
0 C	I									2 2		
ldin	I					- 2.0 -					• 6	
Bui	I									e E	5	
/ed	I									3	3	
oro/	I										5 0 1	
Apr	I					_ 2.5 _				1	1	
- 0	I											
FND	I											
	R	lemarks				I				Water	Invest	igation Type
Beroc	SF	3-35.29210 174.10011								Standing Water Level	Hand	Auger
GS by G	Not	te: All Scala Penetrometer readings taken below 1.5m from start	depth are outside the scope of this tes	t						 Out flow → In flow 	Hand (DCF	l Auger + Scala ?)
CORE-	Co	ite. Suara Perfetrorrieter Interpretation is not endorsed	Equipment:			Recor	ded By:	:		Laboratory Technician:	Approved	l Signatory:
ted with		Geocivil	Hand Auger and	Scala	1	Recor	J.H/A.B	B/J.A te:		Alex Miller	5.	
Produc		2000		2 5010	-		6/07/2	021		Alex Millar	Se	an Kokich

		GEO CI		A	UG	ERH	IOL	ELC	CG		E:in	166 Bank Street, Whangarei, M:0276565226 fo@geocivil.co.nz
	La	ab Job No.:	8020-1863				Boreł	nole N	No.:	HA5/SP5	Sheet:	1 of 1
	Cli Jo	ient: bb:	Cook Costello Geotechnical Investig	ation			Hole D Coordi	epth: nates:	3.50) m	Date:	06/07/21
	Re Cli	eport No.: ient Ref. No.:	W21-870 16057				Locatio	on:	1a S	Seaview Road, Paihia	Ground L	evel:
4/2022 - TM			Geological Interpret	ation 2005	ncs	Legend	Depth (m)	Water	Relative Density	Vane Shear Strength (Tested in accordance with NZGS A $ \frac{8}{12} 9 $	kPa) Jg 2001	Samples
<u> NDC - Approved Building Consent Document - EBC-2022-1188/0 - Pg 42 of 129 - 01/04</u>		Clayey TOPSC moderate plas Clayey SILT, t sands, damp, plasticity End of Boreho	DIL, traces of rootlets, ticity races of rootlets, traces brown with red/brown s le (no retrieval)	dark brown, damp,	CH			Groundwater Not Encountered			- 210+ - 210+	
ш		 								Wator	Invost	igation Type
FOC	S	-35.29240								Standing Water Level		Auger
S by G∈	E	174.10019	aarlings taken holow 1 Fm from -11	denth are outside the seems of 11-1-	et					Out flow		d Auger + Scala
ORE-G	Note Note	te: Scala Penetrometer inter ntractor:	zaunys laken below 1.5m from start pretation is not endorsed	Equipment:	-51		Recor	ded Bv	:	Laboratory Technician:		I Signatory:
with CC								J.H/A.E	3/J A	Iter Hillory		
Produced		Ge	ocivil	Hand Auger and	l Scala	1	Recor	ded Da 6/07/2	te: :021	Alex Millar	Se	an Kokich

		GEO CI		Δ	\UG	ERł	HOL	ELC	CG			E:in	166 Bank Street, Whangarei, M:0276565226 fo@geocivil.co.nz
	La	b Job No.:	8020-1863				Borel	nole N	lo.:	н	IA6/SP6	Sheet:	1 of 1
	Cli Jol	ent: b:	Cook Costello Geotechnical Investio	ation			Hole D Coordi	epth: nates:	1.6	0 m		Date:	06/07/21
	_							natoor		_		-	
	Re Cli	port No.: ent Ref. No.:	W21-870 16057				Locatio	on:	1a -	Seav	view Road, Paihia	Ground Lo	evel:
4/2022 - TM			Geological Interpret	ation 2005	ncs	Legend	Depth (m)	Water	Relative Density	-25 ZN	Vane Shear Strength (I Tested in accordance with NZGS Au <u>9 1 2 1 3 1 2 3 1 2 3 3 2 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 1 3 1</u>	(Pa) g 2001 yesidual	Samples
01/0		Clayey TOPS gravels upto 1 plasticity	OIL, traces of rootlets, 0mm, damp, dark brov	traces of angular /n, moderate	он	یک میں <u>ک</u> TS میں T]			
Approved Building Consent Document - EBC-2022-1188/0 - Pg 43 of 129 -		Clayey SILT, t of rootlets, tra moderate plas	races of angular grave ces of fine to coarse sa ticity.	Is upto 8mm, traces nds, damp, brown,	мн			Groundwater Not Encountered			0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/90/20 /87/20	
1-0		End of Boreho	le (no retrieval)										
ğ													
Ĩ.													
J	R e	-35 20241									Water	Invest	igation Type
y Geroo	5 E	-35.29241 174.10022									▼ Standing Water Level ◆ Out flow	Hand	Auger
E-GS b	Note Note	e: All Scala Penetrometer n e: Scala Penetrometer inter	eadings taken below 1.5m from stan pretation is not endorsed	depth are outside the scope of this te	est						□ D- In flow		2)
h COR	Cor	ntractor:		Equipment:			Recor	ded By	:		Laboratory Technician:	Approved	Signatory:
ced with		Ge	ocivil	Hand Auger and	d Scala		Recor	J H/A E	∃/J.A te:		Alex Miller	5-	
Produc			Geocivil Hand Au					6/07/2	021		Alex Millar	Sea	an Kokich

		GEO CI		A	UG	ERł	HOL	ELC	DG			E:int	166 Bank Street, Whangarei, M:0276565226 ō@geocivil.co.nz
	La	ıb Job No.:	8020-1863				Boreł	nole N	lo.:	HA7/SP7		Sheet:	1 of 1
	Cli Jo	ent: b:	Cook Costello Geotechnical Investig	ation			Hole D Coordi	epth: nates:	2.10	0 m		Date:	06/07/21
	Re Cli	port No.: ent Ref. No.:	W21-870 16057				Locatio	on:	1a 3	Seaview Road, Paihi	а	Ground Le	evel:
4/2022 - TM			Geological Interpret	ation 2005	ncs	Legend	Depth (m)	Water	Relative Density	Vane Shear 3 Tested in accordance 27 29 27 27 27 Scala Penetro NZS4402: 1988 Test 6.5. (blows / 50m) 10 27 29 27	Strength (k e with NZGS Au 02 52 ometer 2 - Procedure 2 n) so and 2 - Procedure 2	Pa) g 2001	Samples
- Pg 44 of 129 - 01/04		Clayey TOPSC damp, low plas Clayey SILT, tr upto 10mm, tra low to moderat	DIL, traces of rootlets, sticity races of rootlets, trace aces of fine to coarse s re plasticity	dark brown, slightly s if angular gravels ands, brown, damp,	OL				-		0 0 1 1 1 1 1 1 1 1 1 1 1 1	/138/29	
FNDC - Approved Building Consent Document - EBC-2022-1188/0		End of Boreho	le (no retrieval)					Groundwater Not Encountered			1 1 1 0 1 1 1 2 3 2 2 3 3 2 2 3 3 2 2 3 3 4 2 2 3 3 4 2 2 3 3 4 2 4 4 4 4 5 6 8 6 8 6 4 5 5 1 1 1 1 1 1 2 3 2 2 3 3 2 2 3 3 4 2 2 3 3 3 4 2 2 3 3 3 4 2 2 3 3 3 4 4 4 4 4 5 6 6 8 8 6 6 7 1 1 1 1 1 2 3 3 3 3 4 2 2 3 3 3 4 4 4 4 4 5 6 6 8 8 6 6 8 8 6 6 8 8 6 7 1 1 1 1 1 1 1 2 3 3 3 4 4 4 4 4 5 6 8 8 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1		
ъс		emarks -35.29243								Wat	er ater Level	Invest	gation Type
S by Gei	E	174.10025								Out flow		Hand	Auger Auger + Scala
)RE-G(Note Note	e: All Scala Penetrometer re e: Scala Penetrometer inter htractor:	earings taken below 1.5m from start pretation is not endorsed	depth are outside the scope of this te	est		Recor	ded Rv			chnician:) Signatory:
with CC	501			Equipment.			Necon	J.H/A.B	3/J.A		11mm	Approved	Signatory.
Produced		Ge	Geocivil Hand A				Recor	ded Dat 6/07/2	te: 021	Alex M Alex M	illar	Sea	an Kokich

		GEO CI		A	UG	ERI	HOL	ELC	DG				E:ir	166 Bank Street, Whangarei, M:0276565226 fo@geocivil.co.nz
	La	ab Job No.:	8020-1863				Borel	hole N	lo.:	H	A8/SP8	:	Sheet:	1 of 1
	CI Jo	ient: b:	Cook Costello Geotechnical Investig	gation			Hole D Coordi	epth: inates:	1.6	0 m		I	Date:	06/07/21
	Re	port No.:	W21-870				Locatio	on:	1a	Seavi	iew Road, Paihia		Ground L	evel:
4/2022 - TM			Geological Interpret	ation 2005	ncs	Legend	Depth (m)	Water	Relative Density	-52 PZN	Vane Shear Si Tested in accordance ه ٢ ٢ ٢ ٢ ٢ ٥ ٢ ٢ ٢ ٢ ٢ ٥ ٢ ٢ ٢ ٢ ٢ ٥ ٢ ٢ ٢ ٢ ٢ ٥ ٢ ٢ ٢ ٢ ٢ ٥ ٢ ٢ ٢ ٢ ٢ ٥ ٢ ٢ ٢ ٢ ٢ ٥ ٢ ٢ ٢ ٢ ٢ ٢ ٥ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٥ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢	trength (k with NZGS Aug S S S meter Procedure 2	Pa) 2001	Samples
01/0		Silty TOPSOIL plasticity	., minor rootlets, dark b	prown, moist, low	OL	≗ ⊻TS ≝	e T					0		
29 -	l	Silty CLAY, tra	aces of rootlets, brown,	moist, low plasticity	CL	8 <u>46</u> × ×						0		
- EBC-2022-1188/0 - Pg 45 of 1		Clayey SILT, r weathered gra 10mm, brown	ninor fine to coarse sa vels, extremely weak, with light grey mottling	nds, minor highly subrounded upto , moist, low plasticity	ML			vot Encountered	-		e	0 0 1 2 2 2 1 2 1 2 1 2 1 2 2	/193/18	
FNDC - Approved Building Consent Document		Lend of Boreho	le (too firm to dig)				- 1.0 - 1.5 	Groundwater				3 3 5 4 3 2 3 2 1 1 1 2 3 6 12 12		
0	R	emarks									Wate	r	Invest	tigation Type
by Geroc	S E	-35.29251 174.10016								▼ Standing Wat <- Out flow	ter Level	Han Han	d Auger d Auger + Scala	
DRE-GS	Not Not	e: All Scala Penetrometer n e: Scala Penetrometer inter ntractor:	depth are outside the scope of this te	əst		Recor	ded Bv	:		Laboratory Tech	nician:	(DC	P) d Signatory:	
Produced with C		Ge	ocivil	Hand Auger and	d Scala	1	Recor	J.H/A.E ded Da 6/07/2	3/J.A te: 021		Hex Mi	Uæv ar	S:	an Kokich

	T				DYNA	MIC	CON	IE PE	ENET	ROI	МЕТЕ	R TE	ST			166 B / M:02 E:info@ge	ank Street, Vhangarei, 276565226 ocivil.co.nz
	Lab	Job No.:	8020-1	1863					Test N	lo.:	SP1				Sheet:	1	of 1
	Clier Job:	nt: :	Cook C Geotecl	ostello nnical Investi	gation				Hole De Coordin	pth: ates:	3.05 m				Date:	06	6/07/21
	Rep Clie	ort No.: nt Ref. No.:	W21-87 16057	0					Locatio	n:	1a Seavi	ew Road,	Paihia		Groun	d Level:	
- TM	pth (m)						NZS	Scala I 4402: 1988	Penetron Test 6.5.2 -	neter - Procedur	re 2						
022	De		_ <u>. </u>		5		<u>.</u>	(Dic 10)	, :		15	;				Values
4/2(3
10							1										8
ò																	1
29																	2 2
f 1	- 0.5 -																1 2
9																	2 1
94	-																2 2
Ā																	3
0																	2
188	- 1.0 -																4
Ì																	2
022																	5
N.																	4
ğ																	2
	- 1.5 -																4
ent																	3
Ĕ																	4
oci																	3 4
D	- 20-																5 5
en	0 -																6 7
Sug							-										8 7
ŏ																	6 4
D																	6
ild	_ 2.5 -																6
Bu	-																3 4 1
ed	-						İ										8 8
Š	-																9
Idd	-																9
Ā	- 8.0 -																11 13
2	-	-															
Z	·	-															
ш	_							<u> </u>									
g	Ren S -3	marks 35.29241														estigatio	n Type
S by Ger	E 1	74.10022	er readings takan	below 1 5m from etc	t depth are outsid.	e the score of t	his test								. √ :	Scala (DCP)	
DRE-G	Note: S	scala Penetrometer	interpretation is not	endorsed	Equipmen	nt:			Record	ed Bv [.]		Laborato	ry Tech	nician [.]	Annro	ved Sign	atory:
vith CC	2011				-quipiner				J	.H/A.B/	J.A	Luborato		1 miles	, .ppi C	at or	
uced v		(Geocivil		S	cala Pene	tromete	r	Record	ed Date	:	Alex	Mil	iar	1		
Prod									6	6/07/20	21	A	lex Milla	ır		Sean Kol	kich

	T	GEO C		DYNAN		NE PE	ENETRO	ОМЕТЕ	R TEST		E:info	166 Bank Whar M:02765 c@geocivi	Street, ngarei, 565226 il.co.nz
	Lab	Job No.:	8020-1863				Test No.:	SP6a		:	Sheet:	1 of	1
	Clier Job:	nt: :	Cook Costello Geotechnical Investi	gation			Hole Depth: Coordinates	0.55 m		I	Date:	06/07	7/21
	Rep Clie	ort No.: nt Ref. No.:	W21-870 16057				Location:	1a Seav	riew Road, Paihia	l	Ground Le	vel:	
- TM	oth (m)				NZ	Scala F 54402: 1988	Penetrometer	r edure 2					
022	Der			5		(bic 10	ws / 50mm)		15	;		·'	Values
4/2(L												1
1/0	L												
0 - 6	L												0
12		₽j											
7 of	L												1
94	L												1
<u>с</u>													'
38/0	L												2
-11	L												
022	L												1
50													
B	L												1
nt -	L												1
me													'
ocr	L												1
d t	L												
Isel	L												1
Cor	- 0.5 -												
bu	L												16
lild	L												
B		_											
OVe	L												
bro	L												
-A	L												
S		-											
И Ч													
	Ren	narks									Investig	gation T	уре
S by Geroc	S -3 E 1	35.29241 74.10022	readings takes to the difference of	d double one with the second	ana cfilite i d						Scala	(DCP)	
ORE-G	Note: A Note: S	All Scala Penetrometer Scala Penetrometer inte ractor:	readings taken below 1.5m from sta erpretation is not endorsed	Equipment:	scope of this test		Recorded B	y :	Laboratory Tech	nician:	Approved	Signator	y:
1 with C							J.H/A	- .B/J.A	Alex Mil	lar	¢		
Producec		Ge	eocivil	Scala	a Penetromet	er	Recorded D 6/07/	ate: 2021	Alex Milla	r	Sea	n Kokich	1

NZGS December 2005

Ref.: 16057-001 Client: Jane Banfield Date: 03&04/08/2021 Borehole No.: MBH01 Location: 1A Seaview Road, Pahia Drilling Method: Machine Borehole Page: 1 Tested by: ProDrill Logger: HJ Checked: HJ Date Checked: 6/08/2021

Denth				
(mbgl)	Legend	Soil Description	Recovery	SPT
0.0	******			
0.1	XXXXXXXX	Concrete		
0.2	MMMMM			
0.3			Í	
0.4		Silty CLAY with some gravel, orange & brown, stiff, moist, high plasticity	,	
0.5		gravel is line, strong & sub-rounded		
0.6			1	
0.7		Olite OLANZ with a second shall a second of death have a stiff we detailed		
0.8	1010000000	Silty CLAY with some snells, orange & dark brown, still, moist, nigh		
0.9		plasticity		
1.0				
1.1	0000000000		Í	
1.2				
1.3				
1.4		Gravelly CLAX (residual soil) light grey, brown & grange mottle, stiff		
1.5		moist high plasticity gravels are fine-medium orange with some light		2/2/4/4/4/5
1.6	-0	arev extremely weak subangular		N = 17
1.7		groy, oxitoriory woak, oubangular		
1.8	20020000		100%	
1.9				
2.0			ļ	
2.1				
2.2		Pushtube Sample		
2.3				
2.4		Gravelly CLAV (residual soil) light grav brown & grange mottle, stiff		
2.5		moist high plasticity gravels are fine-medium orange with some light		
2.6		arev extremely weak subangular		
2.7		groy, oxitorinoly woak, oubangular		
2.8			Í	
2.9		Pushtube Sample		
3.0				3/4/5/4/3/5
3.1	Lange Canal Canal Lande Canal Lande Canal Annual Annual Lande Canal Lande Canal Lande Canal L Balle Canal Lande Canal Lande Canal Canal Canal			N = 17
3.2		Completely weathered, massive, grey, orange & dark brown		
3.3		SILTSTONE, extremely weak: Discontinuities: extremely closely spaced		
3.4		tight aperture, randomly oriented	,	
3.4	********			
Remarks			Topsoil	
Remarks			Fill	
			Clav	
			Silt	******
			Sand	
			Gravel	
			Concrete	ana
			Rock	
			Rook	

NZGS December 2005

Ref.: 16057-001 Client: Jane Banfield Date: 03&04/08/2021 Borehole No.: MBH01 Location: 1A Seaview Road, Pahia Drilling Method: Machine Borehole Page: 1 Tested by: ProDrill Logger: HJ Checked: HJ Date Checked: 6/08/2021

Depth (mbgl)	Legend	Soil Description	Recovery	SPT
3.5				
3.6				
3.7				
3.9				
4.0				
4.1		Completely weathered, massive, grey, orange & dark brown		
4.2		SILTSTONE, extremely weak; Discontinuities: extremely closely spaced	,	
4.3		tight aperture, randomly oriented		
4.5				3/3/4/6/10/11
4.6				N = 31
4.7				
4.8				
5.0			100%	
5.1			10070	
5.2				
5.3				
5.4				
5.6				
5.7				
5.8				
5.9		Highly weathered massive grey orange & dark brown SILTSTONE		
6.0		extremely weak: Discontinuities: extremely closely spaced, tight aperture	e.	
6.2		randomly oriented	,	
6.3				
6.4				
6.5				4/4/4/6/7/11
6.6				N = 28
6.7			000/	
6.8			33%	
6.9 7 0				
Remarks	1 m core	e loss from 6.5 - 8.0 m (highly fractured)	Topsoil	
			Fill	
			Clay	
			Silt	
			Gravel	
			Peat	0000000000
			Rock	
L				

NZGS December 2005

Ref.: 16057-001 Client: Jane Banfielc Date: 03&04/08/2021 Borehole No.: MBH01 Location: 1A Seaview Road, Pahi; Drilling Method: Machine Borehole Page: 1 Tested by: ProDrill Logger: HJ Checked: HJ Date Checked: 6/08/2021

Depth (mbgl)	Legend	Soil Description	Recovery	SPT
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.3 8.3 8.4 8.4 8.5		Highly weathered, massive, grey, orange & dark brown SILTSTONE, extremely weak; Discontinuities: extremely closely spaced, tight apertur randomly oriented	e, 100%	8/8/12/12/1 1/13/14 for 65 mm N = 50+
8.6 8.7 8.8 9.0 9.1 9.1		Moderately weathered, massive, grey, orange & dark brown SILTSTONI extremely weak; Discontinuities: extremely closely spaced, tight apertur randomly oriented, 1 joint set with approx 70 degree inclination, closely spaced, slickensided planar	E, e,	
9.3 9.4 9.5		Moderately weathered, massive, grey, orange & dark brown SILTSTONI extremely weak; Discontinuities: extremely closely spaced, tight apertur randomly oriented	E, e,	12/20/20/20 /10 for 45 mm
9.6 9.7 9.8 9.9 10.0		Moderately weathered, massive, grey, orange & dark brown SILTSTONI extremely weak; Discontinuities: extremely closely spaced, tight apertur randomly oriented, 2 joint sets intersecting at approx 45 degrees, very closely to closely spaced	E, e,	N = 50+
Remarks			Topsoil Fill Clay Silt Sand Gravel Peat Rock	

NZGS December 2005

Ref.: 16057-001 Client: Jane Banfielc Date: 03&04/08/2021 Borehole No.: MBH01 Location: 1A Seaview Road, Pahia Drilling Method: Machine Borehol€ Page: 1 Tested by: ProDrill Logger: HJ Checked: HJ Date Checked: 6/08/2021

Depth (mbgl)	Legend	Soil Description	Recovery	SPT
10.0			-	
10.1		Moderately weathered, massive, grey, orange & dark brown SILTSTONE	-,	
10.2		extremely weak; Discontinuities: extremely closely spaced, light aperture	[,] 100%	
10.2		randomly onented, 2 joint sets intersecting at approx 45 degrees, very		7/9/10/9/9/1
10.3	D term and	closely to closely spaced		0
10.4				N = 38
10.5				
10.6				
10.7		Highly weathered, massive, grey, orange & dark brown SILTSTONE,		
10.8		extremely weak; Discontinuities: extremely closely spaced, tight apertur	e, 50%	
10.9		randomly oriented		
				6/6/5/9/27/9
11.0				for 20 mm
11.1		Highly weathered, massive, grey, orange & dark brown SILTSTONE.		N = 50+
11.2		extremely weak; Discontinuities: extremely closely spaced, tight aperture	Э,	
11.3		randomly oriented	, N.a	
11.4			No recovery	
11.5		Moderately weathered SILTSTONE (inferred based on final SPT)		
		Moderately weathered, SILTSTONE (Interred based on Intal SFT)		
		End of Borehole at 11.5 mbgl		
				1
Remarks			Topsoil	
			Fill	
			Clay	
			Silt	1,2,2,2,2,2,3,2,2 1,2,5,5,2,2,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
			Sand	
			Gravel	
			Peat	<u> second</u>
			Rock	

FNDC - Approved Building Consent Document - EBC-2022-1188/0 - Pg 52 of 129 - 01/04/2022 - TM

Appendix C: Stability Analysis Results

- Back analysis
 - Design Groundwater
 - Elevated Groundwater
- Wall design
 - Design Groundwater
 - Elevated Groundwater
 - o Seismic

Appendix D: Retaining Wall Analysis

- Wallap Output
 - Section A: Lower wall
 - Section A: Upper wall
 - Section B: Lower wall
 - Section B: Upper wall
 - Section C: Lower wall
- Timber Pole Capacity Spreadsheet (x17)

NORTHLAND GEOTECHNICAL SPECIALISTS	Sheet No.
Program: WALLAP Version 6.06 Revision A51.B69.R55	Job No. 0213
Licensed from GEOSOLVE	Made by : RB
Data filename/Run ID: Section_A-lowerwall	
1A Seaview Road	Date: 9-03-2022
Section A - lower wall	Checked :
	Units: kN m

INPUT DATA

Σ .

SOIL PROFILE

Stratum	Elevation of		Soil types
no.	top of stratum	Left side	Right side
1	10.00	1 Back Fill	1 Back Fill
2	8.00	2 Res soils	2 Res soils
3	7.00	3 HW Greywacke	3 HW Greywacke
4	6.47	4 MW Greywacke	4 MW Greywacke

SOIL PROPERTIES

		Bulk	Young's	At rest	Consol	Active	Passive	
5	Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ko	NC/OC	Ka	Kp	kN/m2
(1	Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	Back Fill	18.00	20000	0.470	OC	0.283	3.960	1.000d
					(0.200)	(1.241)	(5.127)	
2	Res soils	18.00	25000	0.470	OC	0.260	4.448	6.000d
					(0.300)	(1.185)	(5.518)	
3	HW	19.00	50000	0.440	OC	0.237	5.023	10.00d
	Greywacke				(0.200)	(1.131)	(5.965)	
4	MW	20.00	200000	0.398	OC	0.207	6.100	20.00d
	Greywacke				(0.200)	(1.052)	(6.768)	
5	Existing	18.00	15000	0.530	OC	0.309	3.543	2.000d
	fill				(0.300)	(1.299)	(4.783)	

Additional soil parameters associated with Ka and Kp

		parameters for Ka		param	Кр		
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	- friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Back Fill	30.00	0.667	0.00	30.00	0.333	0.00
2	Res soils	32.00	0.667	0.00	32.00	0.333	0.00
3	HW Greywacke	34.00	0.667	0.00	34.00	0.333	0.00
4	MW Greywacke	37.00	0.667	0.00	37.00	0.333	0.00
5	Existing fill	28.00	0.667	0.00	28.00	0.333	0.00

GROUND WATER CONDITIONS Density of water = 10.00 kN/m

Density of water = 10.00 km/ms		
	Left side	Right side
Initial water table elevation	1.00	1.00

Automatic water pressure balancing at toe of wall : No

WALL PROPERTIES

=	Fully Embedded Wall
=	1.00
=	0.50 m
=	1.2100E+07 kN/m2
=	9.6660E-04 m4/m run
=	11696 kN.m2/m run
=	Not defined

HORIZONTAL and MOMENT LOADS/RESTRAINTS

Load		Horizontal	Moment	Moment	Partial
no.	Elevation	load	load	restraint	factor
		kN/m run	kN.m/m run	kN.m/m/rad	(Category)
1	8.67	4.910	0	0	N/A
2	8.67	2.520	0	0	N/A

SURCHA	RGE LOA	DS						
Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	10.00	3.66(L)	100.00	20.00	44.46	=	2	N/A
2	10.00	4.50(L)	100.00	20.00	20.00	=	2	N/A
3	10.00	0.00(L)	100.00	3.66	2.50	=	0	N/A
4	10.00	0.30(L)	3.00	0.60	35.00	=	0	N/A
5	10.00	2.70(L)	3.00	0.60	35.00	=	0	N/A
6	10.00	0.30(L)	3.00	0.60	53.00	=	0	N/A
7	10.00	2.70(L)	3.00	0.60	17.00	=	0	N/A

Note: L = Left side, R = Right side

CONST

CONSTRUCTION Construction	STAGES Stage description
1 2	Apply surcharge no.1 at elevation 10.00 Apply surcharge no.2 at elevation 10.00 No analysis at this stage
3	Apply load no.1 at elevation 8.67
4	Excavate to elevation 8.00 on RIGHT side Toe of berm at elevation 1.00 Width of top of berm = 0.10 Width of top of berm = 7.00
5	Apply surgharge no 7 at elevation 10 00
6	Apply surcharge no 6 at elevation 10.00
7	Remove surcharge no 7 at elevation 10.00
,	No analysis at this stage
8	Remove surcharge no.6 at elevation 10.00
9	Apply surcharge no.5 at elevation 10.00
10	Apply surcharge no.4 at elevation 10.00
11	Remove surcharge no.5 at elevation 10.00
	No analysis at this stage
12	Remove surcharge no.4 at elevation 10.00
	No analysis at this stage
13	Apply surcharge no.3 at elevation 10.00
14	Excavate to elevation 7.00 on RIGHT side
	Toe of berm at elevation 1.00 Width of top of berm = 0.10
15	Apply load no.2 at elevation 8.67

FACTORS OF SAFETY and ANALYSIS OPTIONS

Stability analysis: Method of analysis - Burland-Potts Factor on passive for calculating wall depth = 2.00 Passive limit pressures calculated by Wedge Stability

Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m

Bending moment and displacement calculation: Method - 2-D finite element model Open Tension Crack analysis? - No Soil arching modelled? - No Non-linear Modulus Parameter (L) = 10.00 m

Boundary conditions: Length of wall (normal to plane of analysis) = 20.00 m

Width of excavation on Left side of wall = 20.00 m Width of excavation on Right side of wall = 20.00 m

Distance to rigid boundary on Left side = 20.00 m Distance to rigid boundary on Right side = 20.00 m Elevation of rigid lower boundary = -10.00

Lower rigid boundary at elevation -10.00 - Rough Rigid boundary on Left side - Smooth Rigid boundary on Right side - Smooth Wall / soil interface - Smooth

Stage Stage description no.	Outpu Displacement Bending mom.	t options Active, Passive	Graph. output
	Shear force	pressures	5
1 Apply surcharge no.1 at elev. 10.00	Yes	Yes	Yes
2 Apply surcharge no.2 at elev. 10.00	No	No	No
3 Apply load no.1 at elev. 8.67	No	No	No
4 Excav. to elev. 8.00 on RIGHT side	Yes	Yes	Yes
5 Apply surcharge no.7 at elev. 10.00	Yes	Yes	Yes
6 Apply surcharge no.6 at elev. 10.00	Yes	Yes	Yes
7 Remove surcharge no.7 at elev. 10.00	No	No	No
8 Remove surcharge no.6 at elev. 10.00	No	No	No
9 Apply surcharge no.5 at elev. 10.00	Yes	Yes	Yes
10 Apply surcharge no.4 at elev. 10.00	Yes	Yes	Yes
11 Remove surcharge no.5 at elev. 10.00	No	No	No
12 Remove surcharge no.4 at elev. 10.00	No	No	No
13 Apply surcharge no.3 at elev. 10.00	Yes	Yes	Yes
14 Excav. to elev. 7.00 on RIGHT side	No	Yes	No
15 Apply load no.2 at elev. 8.67	Yes	Yes	Yes
* Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2017 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk

NORTHLAND GEOTECHNICAL SPECIALISTS	Sheet No.
Program: WALLAP Version 6.06 Revision A51.B69.R55	Job No. 0213
Licensed from GEOSOLVE	Made by : RB
Data filename/Run ID: Section_A-lowerwall	
1A Seaview Road	Date: 9-03-2022
Section A - lower wall	Checked :

Units: kN,m

Summary of results

STABILITY ANALYSIS of Fully Embedded Wall according to Burland-Potts method Factor of safety on nett available passive Passive limit pressures calculated by Wedge Stability

				FoS fo	r toe	Toe el	ev. for	
				elev. =	1.00	FoS =	2.000	
Stage	G.	L	Strut	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
1	10.00	10.00		Conditi	ons not sui	table f	or FoS ca	alc.
2	10.00	10.00		No anal	ysis at thi	s stage		
3	10.00	10.00	Cant.	124.570	4.80	***	* * *	L to R
4	10.00	8.00	Cant.	3.372	1.18	2.80	5.20	L to R
5	10.00	8.00	Cant.	3.346	1.18	2.78	5.22	L to R
6	10.00	8.00	Cant.	2.403	1.19	1.69	6.31	L to R
7	10.00	8.00		No anal	ysis at thi	s stage		
8	10.00	8.00		No anal	ysis at thi	s stage		
9	10.00	8.00	Cant.	3.320	1.18	2.76	5.24	L to R
10	10.00	8.00	Cant.	2.635	1.19	2.01	5.99	L to R
11	10.00	8.00		No anal	ysis at thi	s stage		
12	10.00	8.00		No anal	ysis at thi	s stage		
13	10.00	8.00	Cant.	3.159	1.18	2.60	5.40	L to R
14	10.00	7.00	Cant.	2.351	1.13	1.76	5.24	L to R
15	10.00	7.00	Cant.	2.238	1.14	1.53	5.47	L to R

Legend: *** Result not found

NORTHLAND GEOTECHNICAL SPECIALISTS Sheet No. Program: WALLAP Version 6.06 Revision A51.B69.R55 Job No. 022 Licensed from GEOSOLVE Made by : F										
Data	Data filename/Run ID: Section_A-lowerwall									
1A Seaview RoadDate: 9-03-202Section A - lower wallChecked :										
Summa	arv of re	esults				Units: k	N, m			
BEND	ING MOME	T and DISP	LACEMENT 2	NALVSTS of	Fully Embe	dded Wall				
Ana	alysis o	ptions			Fully Babe	uueu Maii				
Ler	ngth of w	wall perpend	dicular to	section =	20.00m	- 3				
2-1 So	il deform	ations are	elastic u	ntil the ac	tive or pa	ea. ssive lim	it is reached			
Pas	ssive lin	nit pressure	es calcula	ted by Wedg	e Stabilit	у У				
Ope	en Tensio	on Crack and	alysis - N	10	_					
A1.	l soil ma	oduli were : duo to th	factored t	o take acco	unt of					
5-1	J errect:	Modulus	factors -	- Left side	= 1.04					
				Right side	= 1.03					
Rig	gid bound	daries:	Left side	e 20.00 from	wall	Smooth	boundary			
		1	Right side	20.00 from	wall	Smooth	boundary			
Lov	ver rigio	d boundary a	at elevati	on -10.00		Rough	boundary			
Bend	ing momen	nt, shear fo	orce and d	lisplacement	envelopes					
Node	Y	Displace	ement	Bending	moment	Shear	force			
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum			
1	10 00	m 0 108	m 0 000	KN.m/m	KN.m/m	KN/m	KN/m			
2	9.50	0.098	0.000	0.9	-0.1	2.8	-0.6			
3	9.09	0.089	0.000	2.7	-0.5	5.2	-1.5			
4	8.67	0.081	0.000	5.3	-1.3	14.0	-2.5			
5	8.34	0.074	0.000	10.4	-0.7	17.9	-0.2			
7	7.50	0.057	0.000	28.4	-0.2	24.7	-0.0			
8	7.00	0.048	0.000	41.3	-0.1	26.5	0.0			
9	6.74	0.043	0.000	48.2	-0.0	24.9	0.0			
10	6.47	0.039	0.000	54.4	0.0	21.9	0.0			
12	5.99	0.032	0.000	63.2	0.0	14.3	-0.5			
13	5.00	0.020	0.000	61.7	0.0	0.0	-21.4			
14	4.50	0.016	0.000	50.4	0.0	0.0	-33.5			
15	4.00	0.013	0.000	34.4	0.0	0.0	-27.9			
16	3.50	0.011	0.000	22.0	-0.0	0.0	-19.6			
18	2.50	0.010	0.000	10.7	-0.0	0.0	-11.2			
19	2.00	0.007	0.000	8.0	-0.0	0.0	-5.8			
20	1.50	0.006	0.000	4.8	-0.0	0.0	-7.9			
21	1.00	0.005	0.000	0.0	-0.0	0.0	-1.8			
22	0.88	0.005	0.000	0.0	0.0	0.1	-0.0			
23	-2.00	0.002	0.000	0.0	0.0	0.0	-0.1			
25	-4.00	0.001	0.000	0.0	0.0	0.1	-0.1			
26	-6.00	0.001	0.000	0.0	0.0	0.2	-0.1			
27	-8.00	0.001	0.000	0.0	0.0	0.3	-0.0			
28	-10.00	0.000	0.000	0.0	0.0	0.1	-0.0			

FNDC - Approved Building Consent Document - EBC-2022-1188/0 - Pg 64 of 129 - 01/04/2022 - TM

	Sheet	No.
ĺ	Date:	9-03-2022
	Checke	ed :

Summary of results (continued)

Maximum and minimum bending moment and shear force at each stage

Stage			Bending	moment			- Shear	force	
no.	max	imum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN	I.m/m		kN.m/m		kN/m		kN/m	
1		0.2	5.99	-0.2	7.50	0.6	6.47	-0.2	8.00
2	No	calcula	ation at	this stage	2				
3		0.7	6.47	-1.3	8.67	2.4	8.67	-2.5	8.67
4		32.5	5.99	-0.0	1.00	14.9	7.00	-19.6	5.00
5		32.9	5.99	-0.0	1.00	15.1	7.00	-19.9	5.00
6		67.0	5.50	-0.0	1.00	26.5	7.00	-33.5	4.50
7	No	calcula	ation at	this stage	2				
8	No	calcula	ation at	this stage	5				
9		66.3	5.50	-0.0	1.00	25.2	7.00	-33.2	4.50
10		66.6	5.50	-0.0	1.00	26.1	7.00	-33.2	4.50
11	No	calcula	ation at	this stage	2				
12	No	calcula	ation at	this stage	2				
13		66.3	5.50	-0.0	1.00	25.4	7.00	-33.1	4.50
14		57.9	5.50	-0.0	1.00	24.5	7.00	-27.6	4.00
15		58.3	5.50	-0.0	1.00	25.6	7.00	-27.7	4.00

Maximum and minimum displacement at each stage

Stage		Displac	cement		Stage description
no.	maximum	elev.	minimur	n elev.	
	m		m		
1	0.000	-0.56	0.000	10.00	Apply surcharge no.1 at elev. 10.00
2	No calc	ulation	at this	stage	Apply surcharge no.2 at elev. 10.00
3	0.000	9.09	0.000	10.00	Apply load no.1 at elev. 8.67
4	0.038	10.00	0.000	10.00	Excav. to elev. 8.00 on RIGHT side
5	0.039	10.00	0.000	10.00	Apply surcharge no.7 at elev. 10.00
6	0.106	10.00	0.000	10.00	Apply surcharge no.6 at elev. 10.00
7	No calc	ulation	at this	stage	Remove surcharge no.7 at elev. 10.00
8	No calc	ulation	at this	stage	Remove surcharge no.6 at elev. 10.00
9	0.105	10.00	0.000	10.00	Apply surcharge no.5 at elev. 10.00
10	0.106	10.00	0.000	10.00	Apply surcharge no.4 at elev. 10.00
11	No calc	ulation	at this	stage	Remove surcharge no.5 at elev. 10.00
12	No calc	ulation	at this	stage	Remove surcharge no.4 at elev. 10.00
13	0.105	10.00	0.000	10.00	Apply surcharge no.3 at elev. 10.00
14	0.108	10.00	0.000	10.00	Excav. to elev. 7.00 on RIGHT side
15	0.108	10.00	0.000	10.00	Apply load no.2 at elev. 8.67

NORTHLAND GEOTECHNICAL SPECIALISTS Program: WALLAP Version 6.06 Revision A51.B69.R55 Licensed from GEOSOLVE Data filename/Run ID: Section A-upperwall		Sheet No. Job No. 0213 Made by : RB
1A Seaview Road Section A-upper wall		Date: 9-03-2022 Checked :
	Units:	kN.m

INPUT DATA

Σ 1

01/04/2022

1.

29

ę

S

Ö

σ Ē

11

SOIL PROFILE Stratum Elevation of ----- Soil types ----no. top of stratum Left side Right side 5 Existing fill 5 Existing fill 2 Res soils 2 Res soils 3 HW Greywacke 3 HW Greywacke 4 MW Greywacke 4 MW Greywacke 1 11.50 5 Existing fill 2 10.82 9.54 3 HW Greywacke 3 8.90 4

SOIL PROPERTIES

		Bulk	Young's	At rest	Consol	Active	Passive	
5	Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ko	NC/OC	Ka	Kp	kN/m2
(1	Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	Back Fill	18.00	20000	0.470	OC	0.283	3.960	1.000d
					(0.200)	(1.241)	(5.127)	
2	Res soils	18.00	25000	0.470	OC	0.260	4.448	6.000d
					(0.300)	(1.185)	(5.518)	
3	HW	19.00	50000	0.440	OC	0.237	5.023	10.00d
	Greywacke				(0.200)	(1.131)	(5.965)	
4	MW	20.00	200000	0.398	OC	0.207	6.100	20.00d
	Greywacke				(0.200)	(1.052)	(6.768)	
5	Existing	18.00	15000	0.530	OC	0.309	3.543	2.000d
	fill				(0.300)	(1.299)	(4.783)	

Additional soil parameters associated with Ka and Kp

		parameters for Ka		param	Кр		
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	 friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Back Fill	30.00	0.667	0.00	30.00	0.333	0.00
2	Res soils	32.00	0.667	0.00	32.00	0.333	0.00
3	HW Greywacke	34.00	0.667	0.00	34.00	0.333	0.00
4	MW Greywacke	37.00	0.667	0.00	37.00	0.333	0.00
5	Existing fill	28.00	0.667	0.00	28.00	0.333	0.00

GROUND WATER CONDITIONS

GROUND WATER CONDITIONS		
Density of water = 10.00 kN/m3		
	Left side	Right side
Initial water table elevation	1.83	1.83

Automatic water pressure balancing at toe of wall : No

WALL PROPERTIES

Type of structure	=	Fully Embedded Wall
Elevation of toe of wall	=	7.30
Maximum finite element length	=	0.30 m
Youngs modulus of wall E	=	1.2100E+07 kN/m2
Moment of inertia of wall I	=	3.9760E-04 m4/m run
E.I	=	4811.0 kN.m2/m run
Yield Moment of wall	=	Not defined

HORIZONTAL and MOMENT LOADS/RESTRAINTS

Load		Horizontal	Moment	Moment	Partial
no.	Elevation	load	load	restraint	factor
		kN/m run	kN.m/m run	kN.m/m/rad	(Category)
1	10.82	7.480	0	0	N/A
2	10.82	3.840	0	0	N/A

SUDCHADGE LOADS

Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	12.47	0.90(L)	100.00	20.00	20.00	=	N/A	N/A

Note: L = Left side, R = Right side

CONSTRUCTION STAGES

CONSTRUCTION	STAGES
Construction	Stage description
stage no.	
1	Fill to elevation 12.47 on LEFT side with soil type 1
2	Change EI of wall to 4811.0 kN.m2/m run
	Yield moment not defined
	Reset wall displacements to zero at this stage
3	Apply surcharge no.1 at elevation 12.47
4	Apply load no.1 at elevation 10.82
5	Excavate to elevation 10.00 on RIGHT side
6	Excavate to elevation 9.00 on RIGHT side
7	Fill to elevation 10.00 on RIGHT side with soil type 1
8	Apply load no.2 at elevation 10.82

FACTORS OF SAFETY and ANALYSIS OPTIONS

Stability analysis: Method of analysis - Burland-Potts Factor on passive for calculating wall depth = 2.00

Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m

Bending moment and displacement calculation: Method - 2-D finite element model Open Tension Crack analysis? - No Soil arching modelled? - No Non-linear Modulus Parameter (L) = 6.000 m

Boundary conditions: Length of wall (normal to plane of analysis) = 20.00 m

Width of excavation on Left side of wall = 20.00 mWidth of excavation on Right side of wall = 20.00 m

Distance to rigid boundary on Left side = 20.00 m Distance to rigid boundary on Right side = 20.00 m Elevation of rigid lower boundary = 0.00

Lower rigid boundary at elevation	0.00 - Rough
Rigid boundary on Left side	- Smooth
Rigid boundary on Right side	- Smooth
Wall / soil interface	- Smooth

OUTPUT OPTIONS

Stage Stage description	Outpu	t options	
no.	Displacement	Active,	Graph.
	Bending mom.	Passive	output
	Shear force	pressures	
1 Fill to elev. 12.47 on LEFT side	No	No	No
2 Change EI of wall to 4811.0kN.m2/m run	No	No	No
3 Apply surcharge no.1 at elev. 12.47	Yes	Yes	Yes
4 Apply load no.1 at elev. 10.82	No	No	No
5 Excav. to elev. 10.00 on RIGHT side	Yes	Yes	Yes
6 Excav. to elev. 9.00 on RIGHT side	Yes	Yes	Yes
7 Fill to elev. 10.00 on RIGHT side	Yes	Yes	Yes
8 Apply load no.2 at elev. 10.82	Yes	Yes	Yes
* Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2017 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk

NORTHLAND GEOTECHNICAL SPECIALISTS	Sheet No.
Program: WALLAP Version 6.06 Revision A51.B69.R55	Job No. 0213
Licensed from GEOSOLVE	Made by : RB
Data filename/Run ID: Section_A-upperwall	
1A Seaview Road	Date: 9-03-2022
Section A-upper wall	Checked :

Units: kN,m

Summary of results

STABILITY ANALYSIS of Fully Embedded Wall according to Burland-Potts method Factor of safety on nett available passive

				FoS fo	r toe	Toe el	ev. for	
				elev. =	7.30	FoS =	2.000	
Stage	G	.L	Strut	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
1	12.47	11.50	Cant.	25.902	7.90	10.85	0.65	L to R
2	12.47	11.50		No anal	ysis at th	is stage		
3	12.47	11.50	Cant.	21.165	7.85	10.72	0.78	L to R
4	12.47	11.50	Cant.	13.959	7.88	10.57	0.93	L to R
5	12.47	10.00	Cant.	4.598	7.69	8.29	1.71	L to R
б	12.47	9.00	Cant.	2.260	7.57	7.43	1.57	L to R
7	12.47	10.00	Cant.	3.661	7.67	7.94	2.06	L to R
8	12.47	10.00	Cant.	3.220	7.68	7.81	2.19	L to R

Units: kN,m Summary of results BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options Length of wall perpendicular to section = 20.00m 2-D finite element model. Soil arching not modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No Rigid boundaries: Left side 20.00 from wall Smooth boundary Right side 20.00 from wall Smooth boundary Right side 20.00 from wall Smooth boundary Bending moment, shear force and displacement envelopes Node Y Displacement Bending moment Shear force no. coord maximum minimum Maximum Minimum Maximum Minimum no. m m KN.m/m KN.m/m KN/m KN/m kN/m 1 12.47 0.058 0.000 0.0 -0.0 0.0 0.0 2 12.24 0.055 0.000 0.0 0.0 0.0 0.0 3 12.00 0.051 0.000 0.1 0.0 0.0 0.0 3 12.00 0.051 0.000 0.1 0.0 0.7 0.0 5 11.50 0.043 0.000 0.4 0.0 1.7 0.0 6 11.33 0.040 0.000 0.8 0.0 2.5 0.0 7 11.16 0.037 0.000 1.3 0.0 3.6 -0.7 8 10.99 0.355 0.000 2.0 0.0 4.8 -1.8 9 10.82 0.322 0.000 2.9 0.0 17.6 -2.6 10 10.66 0.029 0.000 1.8 0.0 2.1 -0.7 11 10.50 0.027 0.000 8.7 0.0 18.7 -0.7 12 10.25 0.023 0.000 13.6 0.0 2.1 -0.7 13 10.00 0.019 0.000 18.8 0.0 2.2.1 0.0 16 9.27 0.010 0.000 34.3 0.0 2.2.1 0.0 15 9.54 0.013 0.000 24.0 0.0 21.8 0.0 15 9.54 0.013 0.000 24.0 0.0 21.8 0.0 15 9.54 0.013 0.000 24.0 0.0 24.9 -13.2 18 8.90 0.007 0.000 34.3 0.0 23.2 -5.5 17 9.00 0.008 0.000 39.9 0.0 24.9 -13.2 18 8.90 0.007 0.000 34.3 0.0 23.2 -5.5 17 9.00 0.008 0.000 39.9 0.0 24.9 -13.2 18 8.90 0.007 0.000 41.9 0.0 19.2 20 8.40 0.004 0.000 39.9 0.0 24.9 -13.2 21 8.80 0.003 0.000 0.5 0.0 0.0 -22.0 23 7.55 0.002 0.000 0.5 0.0 0.0 -25.4 20 8.40 0.004 0.000 2.2 0.0 0.0 -25.4 20 8.40 0.004 0.000 2.2 0.0 0.0 -25.4 20 8.40 0.004 0.000 2.2 0.0 0.0 -25.4 20 8.40 0.004 0.000 2.2 0.0 0.0 -25.4 20 8.40 0.004 0.000 2.2 0.0 0.0 -25.4 20 8.40 0.004 0.000 2.2 0.0 0.0 -25.4 20 8.40 0.004 0.000 2.2 0.0 0.0 -25.4 20 8.40 0.004 0.000 2.2 0.0 0.0 -25.4 20 8.40 0.004 0.000 2.2 0.0 0.0 -25.4 20 8.40 0.004 0.000 2.2 0.0 0.0 -25.4 20 8.40 0.004 0.000 2.2 0.0 0.0 -25.4 20 8.40 0.004 0	NORTHLAND GEOTECHNICAL SPECIALISTS Sheet No. Program: WALLAP Version 6.06 Revision A51.B69.R55 Job No. 021 Licensed from GEOSOLVE Made by : F Data filename/Run ID: Section_A-upperwall 1 1A Seaview Road Date: 9-03-202 Section A-upper wall Checked :										
Summary of results BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options Length of wall perpendicular to section = 20.00m 2-D finite element model. Soil arching not modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall Smooth boundary Right side 20.00 from wall Lower rigid boundary at elevation 0.00 Smooth boundary Rough boundary Bending moment, shear force and displacement envelopes Node Y Displacement Bending moment Shear force Node no. coord maximum minimum maximum minimum maximum minimum maximum MiN/m 1 12.47 0.058 0.000 0.0 -0.0 0.0 2 12.24 0.055 0.000 0.0 0.0 0.0 3 12.00 0.051 0.000 0.4 0.0 1.7 0.00 4 11.75 0.047 0.000 1.3 0.0 3.6 -0.7 1 12.24 0.035 0.000 2.9 0.0 1.7 6.0	_	Units: kN,m									
BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options Length of wall perpendicular to section = 20.00m 2-D finite element model. Soil arching not modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall Smooth boundary Lower rigid boundary at elevation 0.00 Smooth boundary Rough boundary Bending moment, shear force and displacement envelopes Node Y Displacement Bending moment no. coord maximum minimum maximum minimum maximum minimum at 1 12.47 Shear force 0.00 1 12.47 0.058 0.000 0.0 0.0 2 12.24 0.055 0.000 0.0 0.0 0.0 3 12.00 0.051 0.000 0.1 0.0 0.7 0.0 4 11.75 0.043 0.000 0.8 0.0 2.5 0.00 7 11.16 0.33 0.000 2.9 0.0 17.6 -2.6 10 0.66 0.29 0.00 18.1 -0.3 1 1 12.47 0.053 0.000 2.9 0.0 17.6 -2.	Summa	ary of re	esults								
Malysis options Length of wall perpendicular to section = 20.00m 2-D finite element model. Soil arching not modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No Rigid boundaries: Left side 20.00 from wall Smooth boundary Right side 20.00 from wall Smooth boundary Lower rigid boundary at elevation 0.00 Rough boundary Bending moment, shear force and displacement envelopes Node Y Displacement no. coord maximum minimum maximum minimum maximum minimum no. coord maximum functum 1 12.47 0.058 0.000 0.0 0.0 2 12.24 0.055 0.000 0.0 0.0 0.0 3 12.00 0.051 0.000 0.0 0.0 0.0 0.0 4 11.75 0.047 0.000 0.1 0.0 0.7 0.0 5 11.50 0.040 0.88 0.0 2.5 0.0 7 1.1 0.5	BENDI	ING MOME	NT and DISE	LACEMENT A	NALYSIS of	Fully Embe	dded Wall				
2-D finite element model. Soil arching not modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No Rigid boundaries: Left side 20.00 from wall Smooth boundary Right side 20.00 from wall Smooth boundary Rough boundary at elevation 0.00 Bending moment, shear force and displacement envelopes Node Y Displacement m m no. coord maximum minimum m m no. coord 0.55 0.000 0.0 2.12.24 0.055 0.000 0.00 0.0 0.0 0.0 1.12.47 0.058 0.000 0.0 0.0 2.12.24 0.055 0.000 0.0 0.0 0.0 3.10 0.43 0.000 0.4 0.0 1.7 0.0 6 11.33 0.40 0.000 1.3 0.0 3.6 -0.7 1 10.66 0.229 0.000 2.8 0.0 1.7.6 -2.6 10 10.66 0.029 0.000 1.8 0.0	Ana Ler	alysis of a	ptions	dicular to	section =	20_00m					
Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall Smooth boundary Smooth boundary Smooth boundary Rough boundary Dever rigid boundary at elevation 0.00 Smooth boundary Rough boundary Bending moment, shear force and displacement envelopes Shear force no. coord maximum minimum maximum minimum maximum minimum maximum minimum thumm/ kN.m/m kN/m kN/m kN/m Shear force 1 12.47 0.055 0.000 0.0 0.0 0.0 2 12.24 0.055 0.000 0.1 0.0 0.0 3 12.00 0.051 0.000 0.4 0.7 0.0 4 11.75 0.047 0.000 0.4 0.0 1.7 0.0 5 11.50 0.043 0.000 2.9 0.0 1.76 -2.6 10 10.66 0.29 0.000 18.8 0.0 2.1 -0.7 11 10.50 0.027 0.000 18.8 0.0 1.1 -0.3 <td>2-E</td> <td>) finite</td> <td>element mo</td> <td>del. So</td> <td>il arching</td> <td>not modell</td> <td>ed.</td> <td></td>	2-E) finite	element mo	del. So	il arching	not modell	ed.				
Open Tension Crack analysis - No Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall Lower rigid boundary at elevation 0.00 Smooth boundary Rough boundary Bending moment, shear force and displacement envelopes Shear force Node Y Displacement Bending moment Shear force no. coord maximum minimum maximum minimum no. coord maximum minimum maximum minimum 1 12.47 0.058 0.000 0.0 0.0 0.0 3 12.00 0.051 0.000 0.0 0.0 0.0 0.0 4 11.75 0.047 0.000 0.4 0.17 0.0 5 11.50 0.043 0.000 1.4 0.7 0.0 7 11.16 0.037 0.000 2.0 0.4 4.8 -0.7 8 10.99 0.035 0.000 2.9 0.0 17.6 -2.6 10 10.66 0.292 0.00	Soi	l defor	mations are	elastic u	ntil the ac	tive or pa	ssive lim	it is reached			
Rigid boundaries: Left side 20.00 from wall Right side 20.00 from wall Lower rigid boundary at elevation 0.00 Smooth boundary Rough boundary Bending moment, shear force and displacement envelopes Bending moment Shear force Node Y Displacement Bending moment Shear force no. coord maximum minimum maximum minimum 1 12.47 0.058 0.000 0.0 -0.0 0.0 0.0 2 12.24 0.055 0.000 0.0 0.0 0.0 0.0 3 12.00 0.051 0.000 0.4 0.0 1.7 0.00 4 11.75 0.047 0.000 0.4 0.0 1.7 0.0 5 11.50 0.043 0.000 2.0 0.4 4.8 -1.8 9 10.82 0.032 0.000 2.9 0.0 1.76 -2.6 10 1.66 0.29 0.000 1.8 0.0 1.8 -0.2 11 </td <td>Ope</td> <td>en Tensio</td> <td>on Crack ar</td> <td>alysis - N</td> <td>lo</td> <td></td> <td></td> <td></td>	Ope	en Tensio	on Crack ar	alysis - N	lo						
Right boundary Right side 20.00 from wall Smooth boundary Lower rigid boundary at elevation 0.00 Rough boundary Bending moment, shear force and displacement envelopes Shear force Node Y Displacement maximum minimum maximum minimum maximum minimum maximum minimum maximum minimum maximum minimum the N/m Shear force no. coord maximum 0.058 0.000 0.0 -0.0 0.0 0.0 2 12.24 0.055 0.000 0.0 0.0 0.0 0.0 3 12.00 0.051 0.000 0.1 0.0 0.7 0.0 4 11.75 0.047 0.000 0.4 0.0 1.7 0.0 5 11.50 0.043 0.000 1.3 0.0 3.6 -0.7 8 10.99 0.035 0.000 2.9 0.0 17.6 -2.6 10 10.66 0.029 0.000 1.8 0.0 2.1 -0.7 11 10.50 0.023 0.000 1.8 0.0 2.1	Ric	rid bound	daries:	Left side	20 00 from	wall	Smooth	boundary			
Lower rigid boundary at elevation 0.00Rough boundaryBending moment, shear force and displacement envelopesNodeYDisplacementBending momentShear forceno. $coord$ maximumminimummaximumminimummaximumminimumnmm $kN.m/m$ $kN.m/m$ kN/m kN/m 112.470.0580.0000.0 -0.0 0.0 0.0 212.240.0550.0000.0 0.0 0.0 0.0 312.000.0510.000 0.0 0.0 0.7 0.0 411.75 0.047 0.000 0.4 0.0 1.7 0.0 511.50 0.043 0.000 0.4 0.0 1.7 0.0 611.33 0.040 0.000 2.0 0.0 4.8 -1.8 910.82 0.032 0.000 2.9 0.0 17.6 -2.6 1010.66 0.029 0.00 13.6 0.0 21.8 -0.2 14 9.77 0.016 0.000 24.0 0.0 21.8 -0.2 14 9.77 0.010 0.000 34.3 0.0 23.2 -9.5 17 9.00 0.008 0.00 34.3 0.0 23.2 -9.5 14 9.77 0.016 0.000 34.3 0.0 23.2 -9.5 17 9.00 0.008 0.000 <		,		Right side	20.00 from	n wall	Smooth 1	boundary			
Bending moment, shear force and displacementending momentShear forceNodeYDisplacementBending momentShear forceno.coordmaximumminimummaximumminimummmaximumminimumMaximumMinimumnMaximumminimummaximumminimumMaximumMinimumnMaximumminimummMinimumMaximum <td>Low</td> <td>ver rigio</td> <td>d boundary</td> <td>at elevati</td> <td>on 0.00</td> <td></td> <td>Rough 1</td> <td>boundary</td>	Low	ver rigio	d boundary	at elevati	on 0.00		Rough 1	boundary			
Node Node YIsplacement Displacement mBending moment maximum minimum maximum maximum minimum maximum maximum minimum maximum minimum maximum maximum maximum minimum 	Bendi	ng momen	nt shear f	orce and d	isplacement	envelopes					
no.coordmaximumminimummaximumminimummaximumminimummaximumminimummaximumminimum112.470.0580.0000.0-0.00.00.0212.240.0550.0000.00.00.00.0312.000.0510.0000.00.00.00.0411.750.0470.0000.10.01.70.0511.500.0430.0000.40.01.70.0611.330.0400.0001.30.03.6-0.7810.990.0350.0002.90.017.6-2.61010.660.0290.0005.80.018.1-0.31110.500.0270.00013.60.021.8-0.2149.770.0160.00024.90.021.8-0.2149.770.0160.00034.30.023.2-9.5179.000.0080.00034.30.023.2-9.5188.900.0070.00041.90.019.2-13.3198.650.0050.00041.00.00.0-25.4208.400.0020.007.10.00.0-26.6217.300.0020.000.00.0-0.0-26.6257.230.0020.0000.0	Node	Y Y	Displac	ement	Bending	moment	Shear	force			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	no.	coord	maximum	minimum	maximum	minimum	maximum	minimum			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			m	m	kN.m/m	kN.m/m	kN/m	kN/m			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	12.47	0.058	0.000	0.0	-0.0	0.0	0.0			
4 11.75 0.031 0.000 0.1 0.0 0.7 0.0 5 11.50 0.043 0.000 0.4 0.0 1.7 0.0 6 11.33 0.040 0.000 0.8 0.0 2.5 0.0 7 11.16 0.037 0.000 1.3 0.0 3.6 -0.7 8 10.99 0.035 0.000 2.0 0.0 4.8 -1.8 9 10.82 0.32 0.000 2.9 0.0 17.6 -2.6 10 10.66 0.029 0.000 5.8 0.0 18.1 -0.3 11 10.50 0.027 0.000 8.7 0.0 18.7 -0.7 12 10.25 0.023 0.000 13.6 0.0 20.1 -0.7 13 10.00 0.019 0.000 18.8 0.0 21.8 -0.2 14 9.77 0.016 0.000 24.9 0.0 21.8 0.0 15 9.54 0.013 0.000 34.3 0.0 23.2 -9.5 17 9.00 0.008 0.000 39.9 0.0 24.9 -13.2 18 8.90 0.007 0.000 41.9 0.0 19.2 -13.3 19 8.65 0.005 0.000 41.9 0.0 0.0 -25.4 20 8.40 0.004 0.000 29.9 0.0 0.0 -22.0 <	2	12.24	0.055	0.000	0.0	0.0	0.0	0.0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	11.75	0.047	0.000	0.0	0.0	0.2	0.0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	11.50	0.043	0.000	0.4	0.0	1.7	0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	б	11.33	0.040	0.000	0.8	0.0	2.5	0.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	11.16	0.037	0.000	1.3	0.0	3.6	-0.7			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	10.99	0.035	0.000	2.0	0.0	4.8	-1.8			
10 10.60 0.029 0.000 5.6 0.0 16.1 -0.3 11 10.50 0.027 0.000 8.7 0.0 18.7 -0.7 12 10.25 0.023 0.000 13.6 0.0 20.1 -0.7 13 10.00 0.019 0.000 18.8 0.0 21.8 -0.2 14 9.77 0.016 0.000 24.0 0.0 21.8 0.0 15 9.54 0.013 0.000 28.9 0.0 22.1 0.0 16 9.27 0.010 0.000 34.3 0.0 23.2 -9.5 17 9.00 0.008 0.000 39.9 0.0 24.9 -13.2 18 8.90 0.007 0.000 41.9 0.0 19.2 -13.3 19 8.65 0.005 0.000 41.0 0.0 0.0 -25.4 20 8.40 0.004 0.000 29.2 0.0 0.0 -46.5 21 8.10 0.003 0.000 15.5 0.0 0.0 -22.0 23 7.55 0.002 0.000 2.9 0.0 0.0 -14.2 24 7.30 0.002 0.000 0.0 0.0 -0.0 26 6.61 0.002 0.000 0.0 0.0 -0.0 26 6.61 0.002 0.000 0.0 0.0 -0.0 26 6.61	10	10.82	0.032	0.000	2.9	0.0	17.6	-2.6			
1210.250.0230.00013.60.020.1 -0.7 1310.000.0190.00018.80.021.8 -0.2 149.770.0160.00024.00.021.8 -0.2 149.770.0160.00024.00.021.8 -0.2 149.770.0160.00024.00.021.8 -0.2 159.540.0130.00028.90.022.1 0.0 169.270.0100.00034.3 0.0 23.2 -9.5 179.000.0080.00039.9 0.0 24.9 -13.2 188.900.0070.00041.9 0.0 19.2 -13.3 198.650.0050.00041.0 0.0 0.0 -25.4 208.400.0040.00029.2 0.0 0.0 -46.5 218.100.0030.00015.5 0.0 0.0 -22.0 237.55 0.002 0.000 2.9 0.0 0.0 -14.2 247.30 0.002 0.000 0.0 0.0 -0.0 266.61 0.002 0.000 0.0 0.0 -0.0 266.61 0.001 0.000 0.0 0.0 -0.0 284.80 0.001 0.000 0.0 0.0 -0.0	11	10.00	0.029	0.000	5.0	0.0	18 7	-0.3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	10.25	0.023	0.000	13.6	0.0	20.1	-0.7			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	10.00	0.019	0.000	18.8	0.0	21.8	-0.2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	9.77	0.016	0.000	24.0	0.0	21.8	0.0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	9.54	0.013	0.000	28.9	0.0	22.1	0.0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	9.27	0.010	0.000	34.3	0.0	23.2	-9.5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	9.00	0.008	0.000	39.9 41 9	0.0	24.9 19.2	-13.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	8.65	0.005	0.000	41.0	0.0	0.0	-25.4			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	8.40	0.004	0.000	29.2	0.0	0.0	-46.5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	8.10	0.003	0.000	15.5	0.0	0.0	-36.8			
23 7.55 0.002 0.000 2.9 0.0 0.0 -14.2 24 7.30 0.002 0.000 0.0 -0.0 0.0 -2.6 25 7.23 0.002 0.000 0.0 0.0 0.0 -0.0 26 6.61 0.002 0.000 0.0 0.0 0.0 -0.0 27 6.00 0.001 0.000 0.0 0.0 -0.0 28 4.80 0.001 0.000 0.0 0.0 -0.0	22	7.80	0.003	0.000	7.1	0.0	0.0	-22.0			
25 7.23 0.002 0.000 0.0 -0.0 0.0 -0.0 25 7.23 0.002 0.000 0.0 0.0 0.0 -0.0 26 6.61 0.002 0.000 0.0 0.0 0.0 -0.0 27 6.00 0.001 0.000 0.0 0.0 -0.0 28 4.80 0.001 0.000 0.0 0.0 -0.0	23	7.55	0.002	0.000	2.9	0.0	0.0	-14.2			
26 6.61 0.002 0.000 0.0 0.0 0.0 -0.0 27 6.00 0.001 0.000 0.0 0.0 0.0 -0.0 28 4.80 0.001 0.000 0.0 0.0 -0 -0	25	7 23	0.002	0.000	0.0	-0.0	0.0	-2.0			
27 6.00 0.001 0.000 0.0 0.0 0.0 -0.0 28 4.80 0.001 0.000 0.0 0.0 0.0 -0.0	26	6.61	0.002	0.000	0.0	0.0	0.0	-0.0			
28 4.80 0.001 0.000 0.0 0.0 0.0 -0.0	27	6.00	0.001	0.000	0.0	0.0	0.0	-0.0			
	28	4.80	0.001	0.000	0.0	0.0	0.0	-0.0			
29 3.60 0.001 0.000 0.0 0.0 0.0 -0.0	29	3.60	0.001	0.000	0.0	0.0	0.0	-0.0			
30 2.40 0.000 0.000 0.0 0.0 0.0 -0.0	30	2.40	0.000	0.000	0.0	0.0	0.0	-0.0			
32 0.00 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0	32	0.00	0.000	0.000	0.0	0.0	0.0	0.0			

Sheet	No.
Date:	9-03-2022
Checke	ed :

Summary of results (continued)

Maximum and minimum bending moment and shear force at each stage

Stage		Bending	moment			- Shear	force	
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	KIN.III/III		KIN . III / III		KIN/III		KIN/III	
1	0.9	8.90	0.0	12.47	1.4	11.50	-1.0	8.40
2	No calcula	ation at	this stag	ge				
3	1.4	8.90	0.0	12.47	2.1	9.54	-1.5	8.40
4	1.9	8.90	0.0	12.47	4.9	10.82	-2.6	10.82
5	20.9	9.54	-0.0	12.47	17.9	10.00	-18.6	8.65
б	39.2	8.65	-0.0	12.47	24.9	9.00	-43.7	8.40
7	39.1	8.65	-0.0	12.47	24.2	9.00	-43.7	8.40
8	41.9	8.90	-0.0	12.47	22.3	9.00	-46.5	8.40

Maximum and minimum displacement at each stage

Stage		Displac	ement		Stage description
no.	maximum	elev.	minimum	elev.	
	m		m		
1	0.002	12.47	0.000	12.47	Fill to elev. 12.47 on LEFT side
2	Wall di	splaceme	nts reset	to zero	Change EI of wall to 4811.0kN.m2/m run
3	0.001	12.47	0.000	12.47	Apply surcharge no.1 at elev. 12.47
4	0.001	12.47	0.000	12.47	Apply load no.1 at elev. 10.82
5	0.023	12.47	0.000	12.47	Excav. to elev. 10.00 on RIGHT side
б	0.054	12.47	0.000	12.47	Excav. to elev. 9.00 on RIGHT side
7	0.054	12.47	0.000	12.47	Fill to elev. 10.00 on RIGHT side
8	0.058	12.47	0.000	12.47	Apply load no.2 at elev. 10.82

NORTHLAND GEOTECHNICAL SPECIALISTS Program: WALLAP Version 6.06 Revision A51.B69.R55 Licensed from GEOSOLVE Data filename/Run ID: Section B-lowerwall		Sheet No. Job No. 0213 Made by : RB
1A Seaview Road Section B - lower wall		Date: 9-03-2022 Checked :
	Units	kN.m

INPUT DATA

- TM

SOIL PROFILE

Stratum	Elevation of			Soil	type	s
no.	top of stratum	Le	ft side		Ri	ght side
1	11.70	1 1	Back Fill		1	Back Fill
2	9.70	2 1	Res soils		2	Res soils
3	8.40	3 1	HW Greywacke		3	HW Greywacke
4	7.40	4 1	MW Greywacke		4	MW Greywacke

SOIL PROPERTIES

		Bulk	Young's	At rest	Consol	Active	Passive	
5	Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ko	NC/OC	Ka	Kp	kN/m2
(I	Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	Back Fill	18.00	20000	0.470	OC	0.283	3.960	1.000d
					(0.200)	(1.241)	(5.127)	
2	Res soils	18.00	25000	0.470	OC	0.260	4.448	6.000d
					(0.300)	(1.185)	(5.518)	
3	HW	19.00	50000	0.440	OC	0.237	5.023	10.00d
	Greywacke				(0.200)	(1.131)	(5.965)	
4	MW	20.00	200000	0.398	OC	0.207	6.100	20.00d
	Greywacke				(0.200)	(1.052)	(6.768)	
5	Existing	18.00	15000	0.530	OC	0.309	3.543	2.000d
	fill				(0.300)	(1.299)	(4.783)	

Additional soil parameters associated with Ka and Kp

		parameters for Ka			param	Кр	
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	 friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Back Fill	30.00	0.667	0.00	30.00	0.333	0.00
2	Res soils	32.00	0.667	0.00	32.00	0.333	0.00
3	HW Greywacke	34.00	0.667	0.00	34.00	0.333	0.00
4	MW Greywacke	37.00	0.667	0.00	37.00	0.333	0.00
5	Existing fill	28.00	0.667	0.00	28.00	0.333	0.00

GROUND WATER CONDITIONS Density of water = 10.00 kN/m3

Density of water = 10.00 km/ms		
	Left side	Right side
Initial water table elevation	1.83	1.83

Automatic water pressure balancing at toe of wall : No

WALL PROPERTIES

=	Fully Embedded Wall
=	2.70
=	0.50 m
=	1.2100E+07 kN/m2
=	9.6660E-04 m4/m run
=	11696 kN.m2/m run
=	Not defined

HORIZONTAL and MOMENT LOADS/RESTRAINTS

	Horizontal	Moment	Moment	Partial
Elevation	load	load	restraint	factor
	kN/m run	kN.m/m run	kN.m/m/rad	(Category)
10.37	4.910	0	0	N/A
10.37	2.520	0	0	N/A
	Elevation 10.37 10.37	Horizontal Elevation load kN/m run 10.37 4.910 10.37 2.520	Horizontal Moment Elevation load load kN/m run kN.m/m run 10.37 4.910 0 10.37 2.520 0	Horizontal Moment Moment Elevation load load restraint kN/m run kN.m/m run kN.m/m/rad 10.37 4.910 0 0 10.37 2.520 0 0

SURCHA	RGE LOA	DS						
Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	11.70	3.66(L)	100.00	20.00	28.80	=	2	N/A
2	11.70	5.80(L)	100.00	20.00	52.40	=	2	N/A
3	11.70	3.66(L)	100.00	2.14	0.00	21.60	2	N/A
4	11.70	0.00(L)	3.66	100.00	2.50	=	0	N/A
5	11.70	0.30(L)	3.00	0.60	35.00	=	0	N/A
б	11.70	2.70(L)	3.00	0.60	35.00	=	0	N/A
7	11.70	0.30(L)	3.00	0.60	53.00	=	0	N/A
8	11.70	2.70(L)	3.00	0.60	17.00	=	0	N/A

Note: L = Left side, R = Right side A trapezoidal surcharge is defined by two values: N = at edge near to wall, F = at edge far from wall

CONSTRUCTION STAGES

Construction	Stage description
stage no.	· · · · · · · · · · · · · · · · · · ·
1	Apply surcharge no.1 at elevation 11.70
2	Apply surcharge no.2 at elevation 11.70
	No analysis at this stage
3	Apply surcharge no.3 at elevation 11.70
4	Apply load no.1 at elevation 10.37
5	Excavate to elevation 9.70 on RIGHT side
	Toe of berm at elevation 2.70
	Width of top of berm = 0.10
	Width of toe of berm = 7.00
6	Apply surcharge no.6 at elevation 11.70
7	Apply surcharge no.5 at elevation 11.70
	No analysis at this stage
8	Remove surcharge no.5 at elevation 11.70
	No analysis at this stage
9	Remove surcharge no.6 at elevation 11.70
	No analysis at this stage
10	Apply surcharge no.7 at elevation 11.70
11	Apply surcharge no.8 at elevation 11.70
12	Remove surcharge no.7 at elevation 11.70
	No analysis at this stage
13	Remove surcharge no.8 at elevation 11.70
	No analysis at this stage
14	Apply surcharge no.4 at elevation 11.70
15	Excavate to elevation 8.70 on RIGHT side
	Toe of berm at elevation 2.70
	Width of top of berm = 0.10
	Width of toe of berm = 6.00
16	Apply load no.2 at elevation 10.37

FACTORS OF SAFETY and ANALYSIS OPTIONS

ACTORS OF SAFETY and ANALYSIS OPTIONS
Stability analysis: Method of analysis - Burland-Potts Factor on passive for calculating wall depth = 2.00 Active limit pressures calculated by Wedge Stability
Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m
Bending moment and displacement calculation: Method - 2-D finite element model Open Tension Crack analysis? - No Soil arching modelled? - No Non-linear Modulus Parameter (L) = 9.000 m
Boundary conditions: Length of wall (normal to plane of analysis) = 20.00 m
Width of excavation on Left side of wall = 20.00 m Width of excavation on Right side of wall = 20.00 m
Distance to rigid boundary on Left side = 20.00 m Distance to rigid boundary on Right side = 20.00 m Elevation of rigid lower boundary = -10.00
Terror wind how down at allowation 10.00 Develo

Lower rigid boundary at elevation -10.00 - Rough Rigid boundary on Left side - Smooth

- Smooth

- Smooth

OUTPUT OPTIONS

Stage Sta	age description	Output	c options	
no.		Displacement	Active,	Graph.
		Bending mom.	Passive	output
		Shear force	pressures	5
1 Apply surcha	arge no.1 at elev. 11.70	Yes	Yes	Yes
2 Apply surcha	arge no.2 at elev. 11.70	No	No	No
3 Apply surcha	arge no.3 at elev. 11.70	Yes	Yes	Yes
4 Apply load 1	no.1 at elev. 10.37	No	No	No
5 Excav. to e	lev. 9.70 on RIGHT side	Yes	Yes	Yes
6 Apply surcha	arge no.6 at elev. 11.70	Yes	Yes	Yes
7 Apply surcha	arge no.5 at elev. 11.70	No	No	No
8 Remove surcl	harge no.5 at elev. 11.70	No	No	No
9 Remove surcl	harge no.6 at elev. 11.70	No	No	No
10 Apply surcha	arge no.7 at elev. 11.70	No	No	No
11 Apply surcha	arge no.8 at elev. 11.70	Yes	Yes	Yes
12 Remove surcl	harge no.7 at elev. 11.70	No	No	No
13 Remove surcl	harge no.8 at elev. 11.70	No	No	No
14 Apply surcha	arge no.4 at elev. 11.70	Yes	Yes	Yes
15 Excav. to e	lev. 8.70 on RIGHT side	Yes	Yes	Yes
16 Apply load n	no.2 at elev. 10.37	Yes	Yes	Yes
* Summary out	put	Yes	-	Yes

Program WALLAP - Copyright (C) 2017 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7EW, UK www.geosolve.co.uk

NORTHLAND GEOTECHNICAL SPECIALISTS	Sheet No.
Program: WALLAP Version 6.06 Revision A51.B69.R55	Job No. 0213
Licensed from GEOSOLVE	Made by : RB
Data filename/Run ID: Section_B-lowerwall	
1A Seaview Road	Date: 9-03-2022
Section B - lower wall	Checked :
	·

Units: kN,m

Summary of results

STABILITY ANALYSIS of Fully Embedded Wall according to Burland-Potts method Factor of safety on nett available passive

Active limit pressures calculated by Wedge Stability

				FoS for toe	Toe elev	. for	
				elev. = 2.70) FoS = 2	.000	
Stage	G.	Tu	Strut	Factor Moment	Тое	wall D	irection
No.	Act.	Pass.	Elev.	of equilib	o. elev. P	enetr	of
				Safety at elev	·	ation	failure
1	11.70	11.70		Conditions not	suitable for	FoS calc	
2	11.70	11.70		No analysis at	this stage		
3	11.70	11.70		Conditions not	suitable for	FoS calc	
4	11.70	11.70		Conditions not	suitable for	FoS calc	
5	11.70	9.70	Cant.	3.711 2.82	5.98	3.72	L to R
6	11.70	9.70	Cant.	3.591 2.82	5.85	3.85	L to R
7	11.70	9.70		No analysis at	this stage		
8	11.70	9.70		No analysis at	this stage		
9	11.70	9.70		No analysis at	this stage		
10	11.70	9.70	Cant.	2.393 2.84	3.84	5.86	L to R
11	11.70	9.70	Cant.	2.368 2.84	3.78	5.92	L to R
12	11.70	9.70		No analysis at	this stage		
13	11.70	9.70		No analysis at	this stage		
14	11.70	9.70	Cant.	3.447 2.82	5.73	3.97	L to R
15	11.70	8.70	Cant.	2.135 2.79	3.13	5.57	L to R
16	11.70	8.70	Cant.	2.032 2.79	2.80	5.90	L to R

NORTHLAND GEOTECHNICAL SPECIALISTS	Sheet No.
Program: WALLAP Version 6.06 Revision A51.B69.R55	Job No. 0213
Licensed from GEOSOLVE	Made by : RB
Data filename/Run ID: Section_B-lowerwall	ĺ
1A Seaview Road	Date: 9-03-2022
Section B - lower wall	Checked :

Units: kN.m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options Length of wall perpendicular to section = 20.00m 2-D finite element model. Soil arching not modelled. Soil deformations are elastic until the active or passive limit is reached Active limit pressures calculated by Wedge Stability Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04

Rigid b	oundaries:	Left	side	20.00	from	wall	Smooth	boundary
		Right	side	20.00	from	wall	Smooth	boundary
Lower r	igid boundary	at ele	evatio	on -10.	00		Rough	boundary

Right side = 1.03

Bending moment, shear force and displacement envelopes

Node	Y	Displac	cement	Bending	moment	Shear	force
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	11.70	0.083	0.000	0.0	0.0	0.0	0.0
2	11.35	0.077	0.000	0.3	-0.0	5.8	-0.3
3	11.00	0.071	0.000	4.2	-0.2	12.9	-1.0
4	10.68	0.065	0.000	8.9	-0.6	15.7	-1.7
5	10.37	0.060	0.000	14.1	-1.3	23.4	-2.5
6	10.04	0.054	0.000	22.0	-0.б	26.8	-0.2
7	9.70	0.048	0.000	31.6	-0.2	30.6	-0.3
8	9.20	0.039	0.000	46.5	-0.3	27.2	-0.3
9	8.70	0.032	0.000	59.2	-0.4	25.0	0.0
10	8.40	0.027	0.000	65.3	-0.3	24.5	0.0
11	7.90	0.021	0.000	69.5	-0.1	17.4	-5.1
12	7.40	0.016	0.000	64.7	0.0	12.9	-17.0
13	6.95	0.012	0.000	60.3	0.0	0.0	-48.4
14	6.50	0.010	0.000	47.2	0.0	0.0	-39.2
15	6.00	0.008	0.000	28.1	0.0	0.0	-31.9
16	5.50	0.006	0.000	15.3	0.0	0.0	-18.9
17	5.00	0.005	0.000	9.2	0.0	0.0	-8.9
18	4.50	0.005	0.000	6.4	0.0	0.0	-4.4
19	4.00	0.004	0.000	4.9	-0.0	0.0	-2.9
20	3.50	0.003	0.000	3.5	-0.0	0.0	-3.3
21	3.10	0.003	0.000	2.0	-0.0	0.0	-4.4
22	2.70	0.003	0.000	0.0	-0.0	0.0	-1.2
23	2.58	0.003	0.000	0.0	0.0	0.0	-0.0
24	1.29	0.002	0.000	0.0	0.0	0.0	-0.2
25	0.00	0.001	0.000	0.0	0.0	0.0	-0.2
26	-2.00	0.001	0.000	0.0	0.0	0.0	-0.2
27	-4.00	0.001	0.000	0.0	0.0	0.0	-0.1
28	-6.00	0.000	0.000	0.0	0.0	0.1	-0.1
29	-8.00	0.000	0.000	0.0	0.0	0.1	-0.0
30	-10.00	0.000	0.000	0.0	0.0	0.0	0.0

Run ID. Section_B-lowerwall	Sheet No.
1A Seaview Road	Date: 9-03-2022
Section B - lower wall	Checked :

Summary of results (continued)

Maximum and minimum bending moment and shear force at each stage

Stage			Bending	moment			- Shear	force	
no.	max	cimum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kľ	J.m/m		kN.m/m		kN/m		kN/m	
1		0.1	6.95	-0.2	8.70	0.5	7.40	-0.2	9.70
2	No	calcula	ation at	this stag	je				
3		0.3	6.95	-0.4	8.70	0.9	7.40	-0.3	9.70
4		0.4	7.40	-1.3	10.37	2.4	10.37	-2.5	10.37
5		19.3	8.40	-0.0	2.70	12.6	9.70	-12.4	6.95
б		19.4	8.40	-0.0	2.70	12.6	9.70	-12.5	6.95
7	No	calcula	ation at	this stag	je				
8	No	calcula	ation at	this stag	je				
9	No	calcula	ation at	this stag	je				
10		69.5	7.90	-0.0	2.70	30.6	9.70	-48.4	6.95
11		69.5	7.90	-0.0	2.70	30.6	9.70	-48.4	6.95
12	No	calcula	ation at	this stag	je				
13	No	calcula	ation at	this stag	je				
14		66.8	7.90	-0.0	2.70	27.7	9.70	-46.6	6.95
15		62.1	7.40	-0.0	2.70	24.2	8.70	-33.2	6.50
16		62.9	7.40	-0.0	2.70	25.0	8.70	-33.1	6.50

Maximum and minimum displacement at each stage Stage ------ Displacement ----- Stage description no. maximum elev. minimum elev. ------

110.	liidaatiiluulii	erev.	minimu	u erev.	
	m		m		
1	0.000	9.20	0.000	11.70	Apply surcharge no.1 at elev. 11.70
2	No calc	ulation	at this	stage	Apply surcharge no.2 at elev. 11.70
3	0.000	-2.00	0.000	11.70	Apply surcharge no.3 at elev. 11.70
4	0.000	10.68	0.000	11.70	Apply load no.1 at elev. 10.37
5	0.017	11.70	0.000	11.70	Excav. to elev. 9.70 on RIGHT side
б	0.017	11.70	0.000	11.70	Apply surcharge no.6 at elev. 11.70
7	No calc	ulation	at this	stage	Apply surcharge no.5 at elev. 11.70
8	No calc	ulation	at this	stage	Remove surcharge no.5 at elev. 11.70
9	No calc	ulation	at this	stage	Remove surcharge no.6 at elev. 11.70
10	0.072	11.70	0.000	11.70	Apply surcharge no.7 at elev. 11.70
11	0.072	11.70	0.000	11.70	Apply surcharge no.8 at elev. 11.70
12	No calc	ulation	at this	stage	Remove surcharge no.7 at elev. 11.70
13	No calc	ulation	at this	stage	Remove surcharge no.8 at elev. 11.70
14	0.072	11.70	0.000	11.70	Apply surcharge no.4 at elev. 11.70
15	0.082	11.70	0.000	11.70	Excav. to elev. 8.70 on RIGHT side
16	0.083	11.70	0.000	11.70	Apply load no.2 at elev. 10.37

Run ID. Section_B-lowerwall	Sheet No.
1A Seaview Road	Date: 9-03-2022
Section B - lower wall	Checked :

Sheet No. Date: 9-03-2022 Checked :

Summary of results (continued)

Σ

11

NORTHLAND GEOTECHNICAL SPECIALISTS	Sheet No.
Program: WALLAP Version 6.06 Revision A51.B69.R55	Job No. 0213
Licensed from GEOSOLVE	Made by : RB
Data filename/Run ID: Section_B	İ
1A Seaview Road	Date: 9-03-2022
Section B	Checked :

Units: kN.m

INPUT DATA

- TM

01/04/2022

11

29

-

q

N

~

σ

Ē

11

BC-2022-1188/0

ш

.

Document

Consent

Building

Approved

- î

FNDC

SOIL PROFILE

Stratum	Elevation of			Soil	type	s
no.	top of stratum	L	eft side		Ri	ght side
1	11.70	1	Back Fill		1	Back Fill
2	9.70	2	Res soils		2	Res soils
3	8.40	3	HW Greywacke		3	HW Greywacke
4	7.40	4	MW Greywacke		4	MW Greywacke

SOIL PROPERTIES

		Bulk	Young's	At rest	Consol	Active	Passive	
5	Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ko	NC/OC	Ka	Kp	kN/m2
(I	Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	Back Fill	18.00	20000	0.470	OC	0.283	3.960	1.000d
					(0.200)	(1.241)	(5.127)	
2	Res soils	18.00	25000	0.470	OC	0.260	4.448	6.000d
					(0.300)	(1.185)	(5.518)	
3	HW	19.00	50000	0.440	OC	0.237	5.023	10.00d
	Greywacke				(0.200)	(1.131)	(5.965)	
4	MW	20.00	200000	0.398	OC	0.207	6.100	20.00d
	Greywacke				(0.200)	(1.052)	(6.768)	
5	Existing	18.00	15000	0.530	OC	0.309	3.543	2.000d
	fill				(0.300)	(1.299)	(4.783)	

Additional soil parameters associated with Ka and Kp

		parameters for Ka		param	Кр		
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	 friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Back Fill	30.00	0.667	0.00	30.00	0.333	0.00
2	Res soils	32.00	0.667	0.00	32.00	0.333	0.00
3	HW Greywacke	34.00	0.667	0.00	34.00	0.333	0.00
4	MW Greywacke	37.00	0.667	0.00	37.00	0.333	0.00
5	Existing fill	28.00	0.667	0.00	28.00	0.333	0.00

GROUND WATER CONDITIONS

Density	of water = 10.00 kN/m3		
		Left side	Right side
Initial	water table elevation	1.83	1.83

Automatic water pressure balancing at toe of wall : No

WALL PROPERTIES

=	Fully Embedded Wall
=	2.70
=	0.50 m
=	1.2100E+07 kN/m2
=	9.6660E-04 m4/m run
=	11696 kN.m2/m run
=	Not defined

HORIZONTAL and MOMENT LOADS/RESTRAINTS

	Horizontal	Moment	Moment	Partial	
Elevation load		load	restraint	factor	
	kN/m run	kN.m/m run	kN.m/m/rad	(Category)	
10.37	4.910	0	0	N/A	
10.37	2.520	0	0	N/A	
	Elevation 10.37 10.37	Horizontal Elevation load kN/m run 10.37 4.910 10.37 2.520	Horizontal Moment Elevation load load kN/m run kN.m/m run 10.37 4.910 0 10.37 2.520 0	Horizontal Moment Moment Elevation load load restraint kN/m run kN.m/m run kN.m/m/rad 10.37 4.910 0 0 10.37 2.520 0 0	

SURCHA	SURCHARGE LOADS													
Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial						
-arge		from	parallel	perpend.	kN/m2		soil	factor/						
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category						
1	11.70	3.66(L)	100.00	20.00	28.80	=	2	N/A						
2	11.70	5.80(L)	100.00	20.00	52.40	=	2	N/A						
3	11.70	3.66(L)	100.00	2.14	0.00	21.60	2	N/A						
4	11.70	0.00(L)	3.66	100.00	2.50	=	0	N/A						
5	11.70	0.30(L)	3.00	0.60	35.00	=	0	N/A						
6	11.70	2.70(L)	3.00	0.60	35.00	=	0	N/A						
7	11.70	0.30(L)	3.00	0.60	53.00	=	0	N/A						
8	11.70	2.70(L)	3.00	0.60	17.00	=	0	N/A						

Note: L = Left side, R = Right side A trapezoidal surcharge is defined by two values:

N = at edge near to wall, F = at edge far from wall

CONSTRUCTION STAGES

Construction Stage description stage no. _____ Apply surcharge no.1 at elevation 11.70 1 2 Apply surcharge no.2 at elevation 11.70 No analysis at this stage 3 Apply surcharge no.3 at elevation 11.70 4 Apply load no.1 at elevation 10.37 Excavate to elevation 9.70 on RIGHT side 5 Toe of berm at elevation 2.70 Width of top of berm = 0.10Width of toe of berm = 7.00Apply surcharge no.6 at elevation 11.70 б 7 Apply surcharge no.5 at elevation 11.70 No analysis at this stage 8 Remove surcharge no.5 at elevation 11.70 No analysis at this stage 9 Remove surcharge no.6 at elevation 11.70 No analysis at this stage 10 Apply surcharge no.7 at elevation 11.70 11 Apply surcharge no.8 at elevation 11.70 12 Remove surcharge no.7 at elevation 11.70 No analysis at this stage 13 Remove surcharge no.8 at elevation 11.70 No analysis at this stage 14 Apply surcharge no.4 at elevation 11.70 Excavate to elevation 8.70 on RIGHT side 15 Toe of berm at elevation 2.70 Width of top of berm = 0.10Width of toe of berm = 6.0016 Apply load no.2 at elevation 10.37

FACTORS OF SAFETY and ANALYSIS OPTIONS

Stability analysis: Method of analysis - Burland-Potts Factor on passive for calculating wall depth = 2.00 Active limit pressures calculated by Wedge Stability

Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3Maximum depth of water filled tension crack = 0.00 m

Bending moment and displacement calculation: Method - 2-D finite element model Open Tension Crack analysis? - No Soil arching modelled? - No Non-linear Modulus Parameter (L) = 9.000 m

Boundary conditions: Length of wall (normal to plane of analysis) = 20.00 m

Width of excavation on Left side of wall = 20.00 mWidth of excavation on Right side of wall = 20.00 m

Distance to rigid boundary on Left side = 20.00 mDistance to rigid boundary on Right side = 20.00 mElevation of rigid lower boundary = -10.00

Lower rigid boundary at elevation -10.00 - Rough Rigid boundary on Left side - Smooth
- Smooth

- Smooth

OUTPUT OPTIONS

i i	Stag	ge Stage description	Output	options ·	
	no	•	Displacement	Active,	Graph.
			Bending mom.	Passive	output
			Shear force	pressures	
	1	Apply surcharge no.1 at elev. 11.70	Yes	Yes	Yes
	2	Apply surcharge no.2 at elev. 11.70	No	No	No
	3	Apply surcharge no.3 at elev. 11.70	Yes	Yes	Yes
	4	Apply load no.1 at elev. 10.37	No	No	No
	5	Excav. to elev. 9.70 on RIGHT side	Yes	Yes	Yes
	6	Apply surcharge no.6 at elev. 11.70	Yes	Yes	Yes
	7	Apply surcharge no.5 at elev. 11.70	No	No	No
	8	Remove surcharge no.5 at elev. 11.70	No	No	No
	9	Remove surcharge no.6 at elev. 11.70	No	No	No
	10	Apply surcharge no.7 at elev. 11.70	No	No	No
	11	Apply surcharge no.8 at elev. 11.70	Yes	Yes	Yes
	12	Remove surcharge no.7 at elev. 11.70	No	No	No
	13	Remove surcharge no.8 at elev. 11.70	No	No	No
	14	Apply surcharge no.4 at elev. 11.70	Yes	Yes	Yes
	15	Excav. to elev. 8.70 on RIGHT side	Yes	Yes	Yes
	16	Apply load no.2 at elev. 10.37	Yes	Yes	Yes
	*	Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2017 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7EW, UK www.geosolve.co.uk

NORTHLAND GEOTECHNICAL SPECIALISTS	Sheet No.
Program: WALLAP Version 6.06 Revision A51.B69.R55	Job No. 0213
Licensed from GEOSOLVE	Made by : RB
Data filename/Run ID: Section_B	
1A Seaview Road	Date: 9-03-2022
Section B	Checked :

Units: kN,m

Summary of results

STABILITY ANALYSIS of Fully Embedded Wall according to Burland-Potts method Factor of safety on nett available passive

Active limit pressures calculated by Wedge Stability

				FoS for elev. =	toe 2.70	Toe elev FoS = 2	. for .000	
Stage	G.	L	Strut	Factor	Moment	Toe V	Vall D	irection
No.	Act.	Pass.	Elev.	of Safetv	equilib. at elev.	elev. Pe -a	enetr ation	of failure
1	11.70	11.70		Conditio	ns not suit	able for	FoS calc	
2	11.70	11.70		No analy	sis at this	stage		
3	11.70	11.70		Conditio	ns not suit	able for	FoS calc	
4	11.70	11.70		Conditio	ns not suit	able for	FoS calc	:.
5	11.70	9.70	Cant.	3.711	2.82	5.98	3.72	L to R
6	11.70	9.70	Cant.	3.591	2.82	5.85	3.85	L to R
7	11.70	9.70		No analy	sis at this	stage		
8	11.70	9.70		No analy	sis at this	stage		
9	11.70	9.70		No analy	sis at this	stage		
10	11.70	9.70	Cant.	2.393	2.84	3.84	5.86	L to R
11	11.70	9.70	Cant.	2.368	2.84	3.78	5.92	L to R
12	11.70	9.70		No analy	sis at this	stage		
13	11.70	9.70		No analy	sis at this	stage		
14	11.70	9.70	Cant.	3.447	2.82	5.73	3.97	L to R
15	11.70	8.70	Cant.	2.135	2.79	3.13	5.57	L to R
16	11.70	8.70	Cant.	2.032	2.79	2.80	5.90	L to R

NORTHLAND GEOTECHNICAL SPECIALISTS	Sheet No.
Program: WALLAP Version 6.06 Revision A51.B69.R55	Job No. 0213
Licensed from GEOSOLVE	Made by : RB
Data filename/Run ID: Section_B	ĺ
1A Seaview Road	Date: 9-03-2022
Section B	Checked :

Units: kN.m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 20.00m 2-D finite element model. Soil arching not modelled. Soil deformations are elastic until the active or passive limit is reached Active limit pressures calculated by Wedge Stability Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.03 Rigid boundaries: Left side 20.00 from wall Smooth boundary

Rigia boundaries.	цетс	side	20.00	LLOIII	Wall	Shooth boundary
	Right	side	20.00	from	wall	Smooth boundary
Lower rigid boundary	at ele	evatio	on -10	.00		Rough boundary

Bending moment, shear force and displacement envelopes

Node	Y	Displac	cement	Bending	moment	Shear	force	
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum	
		m	m	kN.m/m	kN.m/m	kN/m	kN/m	
1	11.70	0.083	0.000	0.0	0.0	0.0	0.0	
2	11.35	0.077	0.000	0.3	-0.0	5.8	-0.3	
3	11.00	0.071	0.000	4.2	-0.2	12.9	-1.0	
4	10.68	0.065	0.000	8.9	-0.6	15.7	-1.7	
5	10.37	0.060	0.000	14.1	-1.3	23.4	-2.5	
б	10.04	0.054	0.000	22.0	-0.6	26.8	-0.2	
7	9.70	0.048	0.000	31.6	-0.2	30.6	-0.3	
8	9.20	0.039	0.000	46.5	-0.3	27.2	-0.3	
9	8.70	0.032	0.000	59.2	-0.4	25.0	0.0	
10	8.40	0.027	0.000	65.3	-0.3	24.5	0.0	
11	7.90	0.021	0.000	69.5	-0.1	17.4	-5.1	
12	7.40	0.016	0.000	64.7	0.0	12.9	-17.0	
13	6.95	0.012	0.000	60.3	0.0	0.0	-48.4	
14	6.50	0.010	0.000	47.2	0.0	0.0	-39.2	
15	6.00	0.008	0.000	28.1	0.0	0.0	-31.9	
16	5.50	0.006	0.000	15.3	0.0	0.0	-18.9	
17	5.00	0.005	0.000	9.2	0.0	0.0	-8.9	
18	4.50	0.005	0.000	6.4	0.0	0.0	-4.4	
19	4.00	0.004	0.000	4.9	-0.0	0.0	-2.9	
20	3.50	0.003	0.000	3.5	-0.0	0.0	-3.3	
21	3.10	0.003	0.000	2.0	-0.0	0.0	-4.4	
22	2.70	0.003	0.000	0.0	-0.0	0.0	-1.2	
23	2.58	0.003	0.000	0.0	0.0	0.0	-0.0	
24	1.29	0.002	0.000	0.0	0.0	0.0	-0.2	
25	0.00	0.001	0.000	0.0	0.0	0.0	-0.2	
26	-2.00	0.001	0.000	0.0	0.0	0.0	-0.2	
27	-4.00	0.001	0.000	0.0	0.0	0.0	-0.1	
28	-6.00	0.000	0.000	0.0	0.0	0.1	-0.1	
29	-8.00	0.000	0.000	0.0	0.0	0.1	-0.0	
30	-10.00	0.000	0.000	0.0	0.0	0.0	0.0	

Run ID. Section_B	Sheet No.
1A Seaview Road	Date: 9-03-2022
Section B	Checked :

Summary of results (continued)

Maximum and minimum bending moment and shear force at each stage

Stage			Bending	moment			- Shear	force	
no.	maz	cimum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kľ	J.m/m		kN.m/m		kN/m		kN/m	
1		0.1	6.95	-0.2	8.70	0.5	7.40	-0.2	9.70
2	No	calcula	ation at	this stag	je				
3		0.3	6.95	-0.4	8.70	0.9	7.40	-0.3	9.70
4		0.4	7.40	-1.3	10.37	2.4	10.37	-2.5	10.37
5		19.3	8.40	-0.0	2.70	12.6	9.70	-12.4	6.95
6		19.4	8.40	-0.0	2.70	12.6	9.70	-12.5	6.95
7	No	calcula	ation at	this stag	je				
8	No	calcula	ation at	this stag	je				
9	No	calcula	ation at	this stag	je				
10		69.5	7.90	-0.0	2.70	30.6	9.70	-48.4	6.95
11		69.5	7.90	-0.0	2.70	30.6	9.70	-48.4	6.95
12	No	calcula	ation at	this stag	je				
13	No	calcula	ation at	this stag	je				
14		66.8	7.90	-0.0	2.70	27.7	9.70	-46.6	6.95
15		62.1	7.40	-0.0	2.70	24.2	8.70	-33.2	6.50
16		62.9	7.40	-0.0	2.70	25.0	8.70	-33.1	6.50

Maximum and minimum displacement at each stage Stage ------ Displacement ----- Stage description no. maximum elev. minimum elev. -----

110.	maximum cicv. minimum cic	•
	m m	
1	0.000 9.20 0.000 11.	70 Apply surcharge no.1 at elev. 11.70
2	No calculation at this stage	Apply surcharge no.2 at elev. 11.70
3	0.000 -2.00 0.000 11.	Apply surcharge no.3 at elev. 11.70
4	0.000 10.68 0.000 11.	70 Apply load no.1 at elev. 10.37
5	0.017 11.70 0.000 11.7	0 Excav. to elev. 9.70 on RIGHT side
6	0.017 11.70 0.000 11.7	Apply surcharge no.6 at elev. 11.70
7	No calculation at this stage	Apply surcharge no.5 at elev. 11.70
8	No calculation at this stage	Remove surcharge no.5 at elev. 11.70
9	No calculation at this stage	Remove surcharge no.6 at elev. 11.70
10	0.072 11.70 0.000 11.7	Apply surcharge no.7 at elev. 11.70
11	0.072 11.70 0.000 11.7	Apply surcharge no.8 at elev. 11.70
12	No calculation at this stage	Remove surcharge no.7 at elev. 11.70
13	No calculation at this stage	Remove surcharge no.8 at elev. 11.70
14	0.072 11.70 0.000 11.7	Apply surcharge no.4 at elev. 11.70
15	0.082 11.70 0.000 11.7	0 Excav. to elev. 8.70 on RIGHT side
16	0.083 11.70 0.000 11.	Apply load no.2 at elev. 10.37

Run ID. Section_B 1A Seaview Road Section B

Sheet No. Date: 9-03-2022 Checked :

Summary of results (continued)

ΣL

11

NORTHLAND GEOTECHNICAL SPECIALISTS	Sheet No.
Program: WALLAP Version 6.06 Revision A51.B69.R55	Job No. 0213
Licensed from GEOSOLVE	Made by : RB
Data filename/Run ID: Section_C-lowerwall	
1A Seaview Road	Date: 9-03-2022
Section C - lower wall	Checked :

Units: kN.m

INPUT DATA

Σ

SOIL PROFILE

Stratum	Elevation of	Soil	types
no	top of stratum	Left side	Pight side
110.	top of scratum	Leic Side	Kight side
1	15.22	6 light weight fill	6 light weight fill
2	12.84	2 Res soils	2 Res soils
3	11.00	3 HW Greywacke	3 HW Greywacke
4	9.15	4 MW Greywacke	4 MW Greywacke

SOIL PROPERTIES

		Bulk	Young's	At rest	Consol	Active	Pass	ive	
Soil type		density	Modulus	coeff.	state.	limit	lim	it	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ko	NC/OC	Ka	Kp		kN/m2
(1	Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kp	с)	(dc/dy)
1	Back Fill	18.00	20000	0.470	OC	0.283	3.9	60	1.000d
					(0.200)	(1.241)	(5.1	27)	
2	Res soils	18.00	25000	0.470	OC	0.260	4.4	48	6.000d
					(0.300)	(1.185)	(5.5	18)	
3	HW	19.00	50000	0.440	OC	0.237	5.0	23	10.00d
	Greywacke				(0.200)	(1.131)	(5.9	65)	
4	MW	20.00	200000	0.398	OC	0.207	6.1	00	20.00d
	Greywacke				(0.200)	(1.052)	(6.7	68)	
5	Existing	18.00	15000	0.530	OC	0.309	3.5	43	2.000d
	fill				(0.300)	(1.299)	(4.7	83)	
6	light	16.00	20000	1.917	OC	0.163	8.7	66	
	weight fill				(0.200)	(0.000)	(0.0	00)	

Additional soil parameters associated with Ka and Kp

		parameters for Ka		parameters for		Кр	
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Back Fill	30.00	0.667	0.00	30.00	0.333	0.00
2	Res soils	32.00	0.667	0.00	32.00	0.333	0.00
3	HW Greywacke	34.00	0.667	0.00	34.00	0.333	0.00
4	MW Greywacke	37.00	0.667	0.00	37.00	0.333	0.00
5	Existing fill	28.00	0.667	0.00	28.00	0.333	0.00
б	light weight fill	42.00	0.667	0.00	42.00	0.333	0.00

GROUND WATER CONDITIONS

Density	OI Wa	ater	= .	10.00	KN/m3				
						Left	side	Right	side
Initial	water	tak	ble	eleva	ation	1.	.83	1	.83

Automatic water pressure balancing at toe of wall : No

WALL PROPERTIES

Type of structure	=	Fully Embedded Wall
Elevation of toe of wall	=	6.22
Maximum finite element length	=	0.50 m
Youngs modulus of wall E	=	1.2100E+07 kN/m2
Moment of inertia of wall I	=	9.6660E-04 m4/m run
E.I	=	11696 kN.m2/m run
Yield Moment of wall	=	Not defined

HORIZONTAL and MOMENT LOADS/RESTRAINTS

Load		Horizontal	Moment	Moment	Partial	
no.	Elevation	load	load	restraint	factor	
		kN/m run	kN.m/m run	kN.m/m/rad	(Category)	
1	13.63	6.950	0	0	N/A	
2	13.63	3.570	0	0	N/A	

SURCHARGE LOADS

Surch -arge		Distance from	Length parallel	Width perpend.	Surcharge kN/m2		Equiv. soil	Partial factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	15.22	0.30(L)	3.00	0.60	35.00	=	N/A	N/A
2	15.22	2.70(L)	3.00	0.60	35.00	=	N/A	N/A
3	15.22	0.30(L)	3.00	0.60	53.00	=	N/A	N/A
4	15.22	2.70(L)	3.00	0.60	17.00	=	N/A	N/A
5	15.22	0.00(L)	3.00	5.00	5.00	=	N/A	N/A

Note: L = Left side, R = Right side

CONSTRUCTION STAGES

Construction	Stage description
stage no.	
1	Apply load no.1 at elevation 13.63
	The effect of strut/anchor stiffness at this elevation
	will be included while applying this load
2	Excavate to elevation 12.62 on RIGHT side
	Toe of berm at elevation 6.22
	Width of top of berm = 0.10
	Width of toe of berm = 6.40
3	Apply surcharge no.3 at elevation 15.22
4	Apply surcharge no.4 at elevation 15.22
5	Remove surcharge no.3 at elevation 15.22
	No analysis at this stage
6	Remove surcharge no.4 at elevation 15.22
	No analysis at this stage
7	Apply surcharge no.1 at elevation 15.22
8	Apply surcharge no.2 at elevation 15.22
9	Remove surcharge no.1 at elevation 15.22
	No analysis at this stage
10	Remove surcharge no.2 at elevation 15.22
	No analysis at this stage
11	Apply surcharge no.5 at elevation 15.22
12	Excavate to elevation 11.62 on RIGHT side
	Toe of berm at elevation 6.22
	Width of top of berm = 0.10
	Width of toe of berm = 5.40
13	Apply load no.2 at elevation 13.63

FACTORS OF SAFETY and ANALYSIS OPTIONS

Stability analysis: Method of analysis - Burland-Potts Factor on passive for calculating wall depth = 2.00 Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m Bending moment and displacement calculation: Method - 2-D finite element model Open Tension Crack analysis? - No Soil arching modelled? - No Non-linear Modulus Parameter (L) = 9.000 m Boundary conditions: Length of wall (normal to plane of analysis) = 20.00 m Width of excavation on Left side of wall = 20.00 m Width of excavation on Right side of wall = 20.00 m Distance to rigid boundary on Left side = 20.00 m Distance to rigid boundary on Right side = 20.00 m Elevation of rigid lower boundary = -10.00 Lower rigid boundary at elevation -10.00 - Rough Rigid boundary on Left side - Smooth Rigid boundary on Right side - Smooth Wall / soil interface - Smooth

OUTPUT OPTIONS

Stag	ge Stage description	Output	options	
no		Displacement	Active,	Graph.
		Bending mom.	Passive	output
		Shear force	pressures	
1	Apply load no.1 at elev. 13.63	No	No	No
2	Excav. to elev. 12.62 on RIGHT side	No	No	No
3	Apply surcharge no.3 at elev. 15.22	No	No	No
4	Apply surcharge no.4 at elev. 15.22	Yes	Yes	Yes
5	Remove surcharge no.3 at elev. 15.22	No	No	No
6	Remove surcharge no.4 at elev. 15.22	No	No	No
7	Apply surcharge no.1 at elev. 15.22	Yes	Yes	Yes
8	Apply surcharge no.2 at elev. 15.22	Yes	Yes	Yes
9	Remove surcharge no.1 at elev. 15.22	No	No	No
10	Remove surcharge no.2 at elev. 15.22	No	No	No
11	Apply surcharge no.5 at elev. 15.22	Yes	Yes	Yes
12	Excav. to elev. 11.62 on RIGHT side	No	No	No
13	Apply load no.2 at elev. 13.63	Yes	Yes	Yes
*	Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2017 by DL Borin, distributed by GEOSOLVE 150 St. Alphonsus Road, London SW4 7BW, UK www.geosolve.co.uk

NORTHLAND GEOTECHNICAL SPECIALISTS Program: WALLAP Version 6.06 Revision A51.B69.R55 Licensed from GEOSOLVE		Sheet No. Job No. 0213 Made by : RB
Data filename/Run ID: Section_C-lowerwall 1A Seaview Road Section C - lower wall		Date: 9-03-2022 Checked :
	Units:	kN.m

Summary of results

STABILITY ANALYSIS of Fully Embedded Wall according to Burland-Potts method Factor of safety on nett available passive

				FoS fo elev. =	r toe 6.22	Toe el FoS =	ev. for 2.000	
Stage	G	.L	Strut	Factor	Moment	Toe	Wall	Direction
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr	of
				Safety	at elev.		-ation	failure
1	15.22	15.22	Cant.	87.208	10.59	* * *	* * *	L to R
2	15.22	12.62	Cant.	2.980	6.39	7.87	4.75	L to R
3	15.22	12.62	Cant.	2.345	6.40	6.93	5.69	L to R
4	15.22	12.62	Cant.	2.329	6.40	6.90	5.72	L to R
5	15.22	12.62		No anal	ysis at thi	s stage		
6	15.22	12.62		No anal	ysis at thi	s stage		
7	15.22	12.62	Cant.	2.525	6.39	7.24	5.38	L to R
8	15.22	12.62	Cant.	2.486	6.39	7.18	5.44	L to R
9	15.22	12.62		No anal	ysis at this	s stage		
10	15.22	12.62		No anal	ysis at thi	s stage		
11	15.22	12.62	Cant.	2.744	6.39	7.57	5.05	L to R
12	15.22	11.62	Cant.	1.835	6.36	* * *	***	L to R
13	15.22	11.62	Cant.	1.711	6.36	* * *	* * *	L to R

Legend: *** Result not found

NORTHLAND GEOTECHNICAL SPECIALISTS	Sheet No.
Program: WALLAP Version 6.06 Revision A51.B69.R55	Job No. 0213
Licensed from GEOSOLVE	Made by : RB
Data filename/Run ID: Section_C-lowerwall	
1A Seaview Road	Date: 9-03-2022
Section C - lower wall	Checked :

Units: kN.m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 20.00m 2-D finite element model. Soil arching not modelled. Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No All soil moduli were factored to take account of 3-D effects due to the finite length of wall: Modulus factors - Left side = 1.04 Right side = 1.03 Rigid boundaries: Left side 20 00 from wall Smooth boundary

Rigia boundaries.	Leit Side 20.00 from war	i Smooth Doundary
	Right side 20.00 from wal	1 Smooth boundary
Lower rigid boundary	at elevation -10.00	Rough boundary

Bending moment, shear force and displacement envelopes Node Y Displacement Bending moment

Dena.	ing momen	c, snear	rorce and	arspracement	enveropes		
Node	Y	Displa	cement	Bending	moment	Shear	force
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	15.22	0.151	0.000	0.0	-0.0	0.0	0.0
2	14.86	0.141	0.000	0.4	-0.0	1.2	-0.2
3	14.50	0.132	0.000	1.3	-0.2	2.6	-0.9
4	14.07	0.120	0.000	3.3	-0.8	4.6	-2.0
5	13.63	0.108	0.000	6.2	-1.9	15.0	-3.4
б	13.24	0.097	0.000	12.4	-0.8	17.1	0.0
7	12.84	0.086	0.000	19.8	-0.0	20.2	0.0
8	12.62	0.080	0.000	24.4	0.0	21.5	0.0
9	12.12	0.068	0.000	35.0	0.0	23.3	0.0
10	11.62	0.055	0.000	46.5	0.0	27.3	-0.1
11	11.31	0.048	0.000	55.0	0.0	27.0	-0.1
12	11.00	0.042	0.000	63.4	0.0	26.7	-0.1
13	10.50	0.032	0.000	74.6	0.0	16.2	-12.5
14	10.00	0.024	0.000	80.7	0.0	6.7	-19.8
15	9.57	0.019	0.000	81.5	0.0	0.0	-17.4
16	9.15	0.015	0.000	78.8	0.0	0.0	-15.5
17	8.82	0.012	0.000	67.2	0.0	0.0	-58.2
18	8.50	0.011	0.000	46.1	0.0	0.0	-58.8
19	8.00	0.009	0.000	23.6	0.0	0.0	-31.8
20	7.50	0.007	0.000	13.4	0.0	0.0	-14.4
21	7.00	0.006	0.000	8.4	0.0	0.0	-9.9
22	6.61	0.006	0.000	4.5	0.0	0.0	-10.7
23	6.22	0.005	0.000	0.0	-0.0	0.0	-2.8
24	6.10	0.005	0.000	0.0	0.0	0.0	0.0
25	5.05	0.004	0.000	0.0	0.0	0.1	0.0
26	4.00	0.003	0.000	0.0	0.0	0.1	0.0
27	2.00	0.001	0.000	0.0	0.0	0.1	0.0
28	0.00	0.001	0.000	0.0	0.0	0.2	0.0
29	-2.00	0.000	0.000	0.0	0.0	0.2	0.0
30	-4.00	0.000	-0.000	0.0	0.0	0.2	0.0
31	-6.00	0.000	-0.000	0.0	0.0	0.2	0.0
32	-8.00	0.000	0.000	0.0	0.0	0.2	0.0
33	-10.00	0.000	0.000	0.0	0.0	0.0	0.0

Run ID. Section_C-lowerwall	Sheet No.
1A Seaview Road	Date: 9-03-2022
Section C - lower wall	Checked :

Summary of results (continued)

Maximum and minimum bending moment and shear force at each stage

Stage		Bending	moment			- Shear	force	
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN.m/m		kN.m/m		kN/m		kN/m	
1	0.5	11.62	-1.9	13.63	3.6	13.63	-3.4	13.63
2	32.8	11.00	-0.0	15.22	15.1	12.62	-15.1	10.00
3	52.5	10.50	-0.0	15.22	21.4	12.62	-24.3	8.82
4	53.1	10.50	-0.0	15.22	21.5	12.62	-25.0	8.82
5	No calcul	ation at	this stag	ge				
6	No calcul	ation at	this stag	ge				
7	52.8	10.50	-0.0	15.22	21.0	12.62	-24.9	8.82
8	52.8	10.50	-0.0	15.22	21.0	12.62	-25.0	8.82
9	No calcul	ation at	this stag	ge				
10	No calcul	ation at	this stag	ge				
11	52.5	10.50	-0.0	15.22	20.3	12.62	-24.8	8.82
12	67.7	10.00	-0.0	15.22	23.7	11.62	-50.0	8.82
13	81.5	9.57	-0.0	15.22	27.3	11.62	-58.8	8.50

Maximum and minimum displacement at each stage

			-		-
Stage		Displac	cement		Stage description
no.	maximum	elev.	minimur	n elev.	
	m		m		
1	0.000	14.07	-0.000	-6.00	Apply load no.1 at elev. 13.63
2	0.044	15.22	0.000	15.22	Excav. to elev. 12.62 on RIGHT side
3	0.079	15.22	0.000	15.22	Apply surcharge no.3 at elev. 15.22
4	0.080	15.22	0.000	15.22	Apply surcharge no.4 at elev. 15.22
5	No calc	ulation	at this	stage	Remove surcharge no.3 at elev. 15.22
б	No calc	ulation	at this	stage	Remove surcharge no.4 at elev. 15.22
7	0.080	15.22	0.000	15.22	Apply surcharge no.1 at elev. 15.22
8	0.080	15.22	0.000	15.22	Apply surcharge no.2 at elev. 15.22
9	No calc	ulation	at this	stage	Remove surcharge no.1 at elev. 15.22
10	No calc	ulation	at this	stage	Remove surcharge no.2 at elev. 15.22
11	0.079	15.22	0.000	15.22	Apply surcharge no.5 at elev. 15.22
12	0.124	15.22	0.000	15.22	Excav. to elev. 11.62 on RIGHT side
13	0.151	15.22	0.000	15.22	Apply load no.2 at elev. 13.63

Design by

Checked

RB

12.1

52

1

0.85

0.85

0.8

130.7

188.8

OK

GPa = E

duration

shaved

steamed

kNm/pole

MPa

Moment Capacity

E =

 $f_{\rm b} =$

 $k_1 =$

k₂₀ =

 $k_{21} =$

M* =

φMn =

φ Vn / pole

kNm

14.84

23.19

33.40

45.46

59.38

75.15

92.78

112.26

133.60

156.79

181.84

208.74

237.50

φ =

Consent Document -

Building

FNDC - Approved

Appendix E: Producer Statement

- PS1 Design
- Certificate of Design Work
- Construction Monitoring Schedule
- Durability Statement

PRODUCER STATEMENT – PS1 DESIGN

	BUILDING CODE CLAUSE(S): B1 JOB NUM	IBER: 0213] ,
	ISSUED BY: Northland Geotechnical Specialists Ltd		
	(Engineering Design Firm)		1
	10: [Wirs Jane Bantield (Dwner/Developer)		
Σ	D BE SLIPPLIED TO: Far North District Council		
Ŀ.	Building Consent Authority)		
22	N RESPECT OF: Terraced retaining wall construction		
20	(Description of Building Work)		1
8	T: 1A Seaview Road, Paihia		
5	(Address, Town/City)	1	au / a 🗔
Ĭ	EGAL DESCRIPTION: LOT 2, DP 124280		N/A
29	Ve have been engaged by the owner/developer referred to above to provide (Extent of E	naaaement):	
f	Design of a system of two terraced retaining walls for landslide remediation		
o m	ir respect of the requirements of the Clause(s) of the Building Code specified above for Pa	art only	, as specified in the
õ	S hedule, of the proposed building work.		
Pg			
'	The design carried out by us has been prepared in accordance with:		
8	• Compliance documents issued by the Ministry of Business, Innovation & Emplo	oyment (<i>Verif</i>	ication method/acceptable
18	solution)		and/or;
5	• Matemative solution as per the attached schedule.		
05	he proposed building work covered by this producer statement is described on the draw	ings specified	in the Schedule. together
Ř	with the specification, and other documents set out in the Schedule.	0	, 6
BC			
щ	In behalf of the Engineering Design Firm, and subject to:		1
÷	Site verification of the following design assumptions: Ground conditions		.
nel	• All proprietary products meeting their performance specification requirements;		
ŭ	believe on reasonable grounds that:		
ŏ	• the building, if constructed in accordance with the drawings, specifications, and	other docume	ents provided or listed in the
H	Schedule, will comply with the relevant provisions of the Building Code and that;	;	
en	the persons who have undertaken the design have the necessary competency to	do so.	
Suc			
ŏ	recommend the CM 3 level of construction monitoring .		
b	(Name of Engineering Design Professional) David Buxton		, am:
di	• CPEng number 1010928		
i.	and hold the following qualifications BE Civil (Hons)		
	The Engineering Design Firm, holds a surrout notion of Professional Indonesity Incurance of	a lass than ¢1	000 000
ĕ	The Engineering Design Firm Choose one a member of ACE New Zealand	o less than \$2	.00,000
ē	the Engineering besign that close one a member of Ace New Zealand.		
dd	S GNED BY (Name of Engineering Design Professional): David Buxton		
4	Signature below):		
Ó	DSBUTTEN		
P			
ш			
	ON BEHALF OF (Engineering Design Firm): Northland Geotechnical Specialists Ltd		Date: 9/03/2022
	Note: This statement has been prepared solely for the Building Consent Authority named above and shall not be	e relied upon by a	ny other person or entity. Any
	liability in relation to this statement accrues to the Engineering Design Firm only. As a condition of reliance on the	is statement, the	Building Consent Authority
	accepts that the total maximum amount of liability of any kind arising from this statement and all other stateme relation to this building work, whether in tort or otherwise, is limited to the sum of \$200,000.	nts provided to t	he Building Consent Authority in

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent.

SCHEDULE to PS1

Please include an itemised list of all referenced documents, drawings, or other supporting materials in relation to this producer statement below:

NGS Report for Jane Banfield, "Geotechnical Design report for Landslip Mitigation", NGS Ref 0213, dated March 2022 NGS Figures 1 - 6, SA, SB & SC.

SCS Drawings, SK-SE-000 to -003, dated March 2022

GUIDANCE ON USE OF PRODUCER STATEMENTS

Information on the use of Producer Statements and Construction Monitoring Guidelines can be found on the Engineering New Zealand website

https://www.engineeringnz.org/engineer-tools/engineering-documents/producer-statements/

Producer statements were first introduced with the Building Act 1991. The producer statements were developed by a combined task pommittee consisting of members of the New Zealand Institute of Architects (NZIA), Institution of Professional Engineers New Zealand (now Engineering New Zealand), Association of Consulting and Engineering New Zealand (ACE NZ) in consultation with the Building (ficials Institute of New Zealand (BOINZ). The original suite of producer statements has been revised at the date of this form to ensure candard use within the industry.

ne producer statement system is intended to provide Building Consent Authorities (BCAs) with part of the reasonable grounds ecessary for the issue of a Building Consent or a Code Compliance Certificate, without necessarily having to duplicate review of design or postruction monitoring undertaken by others.

FS1 DESIGN Intended for use by a suitably qualified independent engineering design professional in circumstances where the BCA accepts a producer statement for establishing reasonable grounds to issue a Building Consent;

S2 DESIGN REVIEW Intended for use by a suitably qualified independent engineering design review professional where the CA accepts an independent design professional's review as the basis for establishing reasonable grounds to issue a Building Consent;

53 CONSTRUCTION Forms commonly used as a certificate of completion of building work are Schedule 6 of NZS 3910:2013 r Schedules E1/E2 of NZIA's SCC 2011²

S4 CONSTRUCTION REVIEW Intended for use by a suitably qualified independent engineering construction monitoring professional the either undertakes or supervises construction monitoring of the building works where the BCA requests a producer statement prior to suing a Code Compliance Certificate.

his must be accompanied by a statement of completion of building work (Schedule 6).

The following guidelines are provided by ACE New Zealand and Engineering New Zealand to interpret the Producer Statement.

Competence of Engineering Professional

This statement is made by an engineering firm that has undertaken a contract of services for the services named, and is signed by a person authorised by that firm to verify the processes within the firm and competence of its personnel.

The person signing the Producer Statement on behalf of the engineering firm will have a professional qualification and proven current competence through registration on a national competence-based register such as a Chartered Professional Engineer (CPEng).

Membership of a professional body, such as Engineering New Zealand provides additional assurance of the designer's standing within the profession. If the engineering firm is a member of ACE New Zealand, this provides additional assurance about the standing of the firm.

Persons or firms meeting these criteria satisfy the term "suitably qualified independent engineering professional".

Professional Indemnity Insurance

As part of membership requirements, ACE New Zealand requires all member firms to hold Professional Indemnity Insurance to a minimum level.

The PI Insurance minimum stated on the front of this form reflects standard practice for the relationship between the BCA and the engineering firm.

Professional Services during Construction Phase

There are several levels of service that an engineering firm may provide during the construction phase of a project (CM1-CM5 for engineers³). The building Consent Authority is encouraged to require that the service to be provided by the engineering firm is appropriate for the project concerned.

Requirement to provide Producer Statement PS4

Building Consent Authorities should ensure that the applicant is aware of any requirement for producer statements for the construction phase of building work at the time the building consent is issued as no design professional should be expected to provide a producer statement unless such a requirement forms part of the Design Firm's engagement.

Refer Also:

- ¹ Conditions of Contract for Building & Civil Engineering Construction NZS 3910: 2013
- ² NZIA Standard Conditions of Contract SCC 2011
- ³ Guideline on the Briefing & Engagement for Consulting Engineering Services (ACE New Zealand/Engineering New Zealand 2004)
- ⁴ PN01 Guidelines on Producer Statements

www.acenz.org.nz www.engineeringnz.org

ĭ

104/2022

2

129

Ъ

100

Pg

FNDC - Approved Building Consent Document - EBC-2022-1188/0

Section 30C and Section 45, Building Act 2004

The Building Street address	1A Seaview Road	
Suburb	Paihia	Town/city Bay of Islands
Postcode	0200	Building consent no.
The Owner		
Name(s)	Jane Banfield	
Email	accommodationatthebeach@gmail.com	Phone 0220183366
Address	1A Seaview Road, Paihia	

Basis for providing this memorandum

I am providing this memorandum in my role as the **specialist** designer who carried out or supervised specific Primary structure elements of restricted building work (RBW) design work as described in this memorandum. Other designers will provide memoranda covering the remaining RBW design work. Refer also to the attached PS1.

Identification of restricted building work (RBW) design work

I, David Buxton		carried out or supervised the following RBW design work:	
Primary structure: B1 Design work that is RBW		Description (as required) and reference to plans and specifications	Carried out or supervised
Foundations and subfloor framing	×		
Retaining walls	×	2No. timber pole retaining walls as per NGS plans and report Ref 0213, Figures 1 - 6, SA, SB & SC	Supervised
Beams	×		
Portal	×		
Bracing	×		
Other (primary)	×		

Note: SED = Elements subject to Specific Engineering Design outside of the scope of NZS3604:2011, unless otherwise noted.

Initial

SBUTTO

Date 9/03/2022

Waivers and modifications

Are waivers or modifications of the Building Code required?

If yes, please provide details of the waivers or modifications:

Building Code clause

Waiver/modification required

Issued by

Name	David Buxton	Design entity/company	Northland Geotechnical Specialists
Chartered status	CPEng	Chartered no.	1010928
Email	david@northlandgeotech.co.nz	Website	www.northlandgeotech.co.nz
Phone (daytime)	0226981129	Phone (after hours)	0226981129
Mobile			
Postal address	558 Crane Road, RD1 Kamo, Whangarei 0185		
Physical address	558 Crane Road, Kauri, Whangarei		

Declaration

Signature

I, David Buxton , LBP state that I have applied the skills and care reasonably required of a competent design professional in carrying out or supervising the RBW described in this memorandum and that based on this, I certify that the RBW described in this memorandum:

- complies with the Building Code; or
- complies with the Building Code subject to any waiver or modification of the Building Code described in this memorandum.

DSButton

Date 09/03/2022

CONSTRUCTION MONITORING SCHEDULE RESIDENTIAL

Schedule of inspections for

Address 1A Seaview Road, Paihia

We confirm that NGS have been engaged to undertake construction monitoring of the specific engineering design items to an Engineering New Zealand/ACENZ CM level and propose to undertake at least the following site inspections:

Itom of increation No

T:.....

NO. (Delete any t	Item of inspection hat do not apply)	limetrame
1	Timber poles	Pre-pour
2	Ground conditions of excavated pile holes	Pre-pour
3	Pre start meeting to confirm methodolody	Pre-start
4	Daily monitoring of floor level using zip level	Daily until directed otherwise by Engineer

Notes:

- The above items of inspection are the minimum required to enable NGS a) to issue a PS4 - Producer Statement Construction Review for the specific engineering design items.
- The above items of inspection do not cover work constructed in accordance with NZS 3604:2011, for which inspections are to be undertaken b) by the Building Consent Authority.
- The Contractor/Builder is to provide NGS at least 24 hours' notice of the requirement for an c) inspection. The above timeframes are indicative, the Engineer and Contractor are to agree the timing of inspection prior to work commencing on site.
- d) A copy of this inspection schedule is to be held on site during the works, and the Contractor/Builder is to provide reasonable and safe access to enable works to be inspected according to the schedule.
- The above schedule does not necessarily represent the actual number of inspections to be undertaken. The number of inspections will depend e) on the construction method, sequence of the works and whether or not unforeseen conditions or difficulties are encountered on site.

To the Building Official Far North District Council New retaining walls to remediate landslide at 1A Seaview Road, Paihia

Compliance with Building Code Clause B2 – Durability

The purpose of this letter is to demonstrate how compliance with Clause B2 (Durability) of the Building Code will be achieved for the above project. We can confirm that for specifically designed structural elements that are included within our design documentation:

Material	Means of compliance	Details
Structural Timber	B2/AS1	Timber treatment has been selected in
		accordance with 1A of B2/AS1

Yours faithfully, David Buxton, Geotechnical Engineer, CPEng

For and on behalf of Northland Geotechnical Specialists Limited

Applicability

This Letter has been prepared solely for the benefit of our client Jane Banfield and the Far North District Council with respect to Building Consent application for which it has been prepared. The recommendations and opinions in this report are limited to the purpose stated within the report. Northland Geotechnical Specialists take no liability for use of any matter in this report by any other party without prior review and agreement in writing. Any other party using this report does so entirely at their own risk.

File: ngs durability_1a seaview road

Appendix F: Property Title

• Title: Lot 1 DP 42205

RECORD OF TITLE UNDER LAND TRANSFER ACT 2017 FREEHOLD

Search Copy

/uir Registrar-General of Land

dentifier Land Registration District North Auckland Date Issued

07 February 1990

NA72C/345

Prior References NA66A/532

1103 square metres more or less Legal Description Lot 2 Deposited Plan 124280 **Registered Owners**

Fee Simple

ane Barbara Banfield as to a 1/2 share

ane Barbara Banfield and TW Trustees 2011 Limited as to a 1/2 share

Interests

Estate

Area

A54171 Building Line Restriction

Appurtenant hereto is a right of way created by Transfer A69583

The easements created by Transfer A69583 are subject to Section 37 (1) (a) Counties Amendment Act 1961

2099389.2 Resolution pursuant to Section 321(3)(c) Local Government Act 1974 - 7.2.1990 at 11.07 am

Subject to a stormwater right over part marked B on DP 124280 specified in Easement Certificate C099389.5 - 7.2.1990 at 1.07 am

Appurtenant hereto is a right of way and to electricity and water supply rights specified in Easement Certificate C099389.5 7.2.1990 at 11.07 am

The easements specified in Easement Certificate C099389.5 are subject to Section 309 (1) (a) Local Government Act 1974

1407705.1 Subject to conditions pursuant to Section 461(1) Local Government Act 1974 and certifying that a private lrain passes through Lot 1 on DP 124280 and serves the within land - 5.4.2019 at 4:05 pm

Identifier

NA72C/345

Appendix G: Structural Design Package

- SCS Structures Ltd Drawings SK-SE-000 to -003
- Structural Calculation Report
- PS1 Design
- Certificate of Design Work

(PILES SHOWN INDICATIVELY ON GENERAL LAYOUT PLAN)

NEW CONCRETE PILE

GENERAL LAYOUT PLAN 1:50 A3

4No. OFF NEW 450mm DIAM BORED CONCRETE UNDERPINNING PILES. SEE DETAILS AND SECTION VIEWS ON SK-SE-001 TO 002.

						0		Original	Design	SCS		Client	Project:	
1	FOR BUILDING CONSENT & CONSTRUCTION	SCS		10.	.03.22	jinato		Scale (A1)	Drawn				- FC	
В	PRELIMINARY ISSUE	SCS		4.0	13.22	1 Orlic		 Reduced	Dsg Verifier			JANE BANFIELD	FC FC	JUNDATION REMEDIAL WORKS
А	FOR REVIEW & COMMENT	SCS		3.0	13.22	awing		Scale (A3)	Dwg Check				1A	A SEAVIEW RD, PAIHIA
No.	Revision	By	Chk	Appd [Date	Ď	SCS STRUCTURES	 AS NOTED	* Refer to Revision	1 for Original Signatur	9			

DO NOT SCALE

NOTES:

1.0 GENERAL NOTES

- 1.1 All dimensions are in mm
- 1.2 All dimensions shall be verified on site by the Contractor prior to fabrication / or construction commencing.
- Structural drawings shall be read in conjunction with the drawings of other Consultants (e.g. Architect, Geotech)
- 2.0 TEMPORARY WORKS
 - 2.1 The Contractor shall be responsible for the design & procurement of any temporary works should these be required such as propping or temporary working platform or formwork.

7.0 DRILL IN CONCRETE ANCHORS

- 7.1 Contractor is to locate all existing reinforcement at fixing locations by x-ray or scanner prior to any drilling.
- 7.2 No existing reinforcement to be cut or damaged.
- 7.3 Pilot drill all holes as added precaution.

9.0 CONSTRUCTION NOTES

- 9.1 Any discrepancies, unexpected conditions exposed on site, or structural details missing shall be referred to the engineer for resolution.
- 9.2 The Contractor shall keep the engineer abreast of progress on site to enable inspections of completed work.
- 9.3 All levels & dimensions to be confirmed on site by the Contractor.
- 9.4 Refer to NGS Ltd Geotech drawings for all retaining wall requirements, locations, sizes & set out of retaining.
- 9.5 Do not use the structural drawings for set out dimensions. Contractor to carry out site measurements.
- 9.6 All works to comply with the Contractor's Health & Safety Manual and the Health & Safety at Work Act 2015.
- 9.7 Contractor's proposed methodology and sequencing for installation of reinforced concrete underpinning piles to be submitted to the engineer for review and approval prior to commencing the work.

GENERAL ARRANGEMENT

STRUCTURAL

FOUNDATION REMEDIAL WORKS 1A SEAVIEW RD, PAIHIA

DO NOT SCALE

STRUCTURAL DETAIL SHEET 1	STRUCTURAL		
	Drawing No.	SK-SE-001	

Rev.

			Original	Design	SCS		Client	Project:
	ina to		Scale (A1)	Drawn				
1 FOR BUILDING CONSENT & CONSTRUCTION	SCS 10.03.22		Reduced	Dsg Verifier			JANE BANFIELD	FOUNDATION REMEDIAL WORKS
A FOR REVIEW & COMMENT	SCS 3.03.22		Scale (A3)	Dwg Check				1A SEAVIEW RD, PAIHIA
No. Revision	By Chk Appd Date	SCS STRUCTURES	AS NOTED	* Refer to Revision	1 for Original Signatur	e		

STRUCTURAL DETAIL	SHEET 2

STRUCTURAL

SK-SE-002

IF IN DOUBT ASK.

кеv. 1

FNDC - Approved Building Consent Document - EBC-2022-1188/0 - Pg 112 of 129 - 01/04/2022 - TM

A FOR REVIEW & COMMENT

Revision

No.

 SCS
 3.03.22

 By
 Chk
 Appd
 Date

SCS STRUCTURES

Dwg Check

FOR BUILDING CONSENT

1A SEAVIEW RD, PAIHIA

SK-SE-003

IF IN DOUBT ASK.

1

STRUCTURAL CALCULATION REPORT

FOUNDATION REMEDIAL WORKS 1A SEAVIEW ROAD, PAIHIA JANE BANFIELD

Prepared by

3/03/2022

	Job Number: 1845	_{Date} 2/03/2022	
	Job Name: 1A SEAVIEW RD, PAIHIA		
ICS STRUCTURES	Subject: FOUNDATION REMEDIAL WO	RKS	
	By: SCS	Page No: of	
DESCRIPTION:			
Following the occurren Seaview Rd, Paihia, ar Geotechnical Specialis assist with the NGS de reinforced concrete und	ce of a slip in close proximity to the existing nd subsequent geotechnical investigations b ts (NGS), SCS Structures Ltd (SCS) was er sign solution by covering specialist structura derpinning and shotcrete stabilising works. I out an initial site visit on 26/01/22 which ind	dwelling at 1A by Northland ngaged to al input for corporated a	
high level visual assess movement were observed building condition in ge attempted.	sment of parts of the dwelling. No obvious s ved during this initial site walkover. No asse neral or compliance with current building co	signs of essment of the ode was	
The presence of an old proximity to the existing NGS geotechnical insp soil profile above the tr may have caused this. load path of the adjace vacinity of this stump. existing piles. Some lo under the pile P1. The appear to consist of wh surrounding the hole du rectangular segment existing grou create the formation lev Therefore it was conclu- retention works being of details for a reinstated strata (Highly Weathere	I dead Pohutukawa tree stump was observe g foundations within the zone of influence of ection suggests that tension cracking was p ee stump and that some rotation at the base This raised concerns about the vertical loa nt existing foundations to solid bearing mate NGS locally hand excavated to expose the ose soil was found and it appeared that the existing piles are noted to be of varying dep at was a fully embedded length cast agains ug for the pile, and then an upper formed so ktending up to slab or perimeter strip footing les above ground was lined with some sort Omm thk. It is assumed that fill material was nd, retained by the lining wall and pile exter vel for the adjacent ground floor slab. uded that as part of the overall land stabilisa carried out by NGS that SCS would provide and strengthened vertical load path to comp ed Greywacke) for the existing piles labelled	ed in close the slip. The present in the e of the stump d carrying erial in the depth of re was a gap pths and st the soil juare or g level. The of RC lining s placed on hsions to tion & ground design and betent bearing d P1-P5.	

SCS STRUCTURES	

	Job Number: 1845	_{Date} 2/03/	2022
	Job Name: 1A SEAVIE	EW RD, PAIHIA	
RUCTURES	Subject: FOUNDAT	ON REMEDIAL WORKS	
	By: SCS	Page No:	of
DESIGN PHILOSOPH	<u>IY:</u>		
1. New RC piles are b path to the competant provided by NGS tiere	pearing piles only to reins t highly weathered greyw ed retaining wall system.	tate and enhance the vertical load acke. Ground retention to be	d
2. 4 new RC piles pro piles P3& P4 which an suffice.	posed. 1 in front of each re located right next to ea	existing pile except at existing a other. Here just one new pile wi	ill
3. New piles to be 450 existing ground level. greywacked in NGS h 1.2m of embedment in	Omm diam bored concret This is on the basis that and auger location HA9 nto they highly weathered	e piles taken down 3.0m below depth to top of highly weathered was 1.8m, and then we anticipate d greywacke.)
4. Underpinning detai existing piles to the net	I to be developed to allov ew piles through a contin	v transfer of vertical load from uous robust load path.	
5. Due to physical and underpinning piles wil element will be neede piles will need to be d	d geometrical constraints I be eccentric to the exist d to tie the existing and r esigned for the induced r	it is assumed that the new ting piles. Therefore a bridging new piles together and the new moment due to this eccentricity.	
6. Design life of new u	underpinning piles = 50yr	S	
SHOTCRETE 5. Two conditions of s	hotcrete required.		
(5.1) When existing retaining wall' the soil term, but to protect ag shotcrete detail is pro	ground is excavated in finities in the sequence of the sequenc	ront of the new NGS 'upper quately between piles in the short d frittering of this vertical soil face e new permanent piles.	а
(5.2) Part way along area the building foot condition where there NGS upper retaining is currently showing s erosion of the slope w	the building between the print steps back at ground is a slope of exposed ex wall and the edge of the igns of frittering and for t which could ultimately und	e seaward corner and the carpark d level. This creates a new sisting soil above the top of the ne existing foundation. This soil slop he long term protection against dermine the existing footing it is	ew De
proposed to protect th	nis slope with a shotcrete	lining.	

Job Name: 1A SEAVIEW RD, PAIHIA Subject: FOUNDATION REMEDIAL WORKS By: SCS Page No: of PILE DESIGN: DESIGN LOADINGS:		Job Number: 1845	Date	2/03/2022
Subject: FOUNDATION REMEDIAL WORKS By: SCS Page No: of PILE DESIGN: DESIGN LOADINGS:		Job Name: 1A SEAVIEW R	D, PAIHIA	
By: SCS Page No: of PILE DESIGN:	CTURES	Subject: FOUNDATION F	REMEDIAL WORKS	
PILE DESIGN: DESIGN LOADINGS: Loadings calculated as per NZS1170 Imposed Load Allowances: NZS 1170.1:2002 Residential floor load = 1.5kPa Residential deck load 2.0kPa Roof access for maintenance = 0.25kPa Dead Load Allowances: Lightweight roof = 0.5kPa External wall = 0.5kPa x 5m = 2.5kN/m (Ground to roof) Lightweight roof = 0.5kPa External wall = 0.5kPa x 5m = 2.5kN/m (Ground to roof) Lightweight roof = 0.5kPa Lostab = 0.11*24 = 2.64kPa LO floor finishes = 20mm x 24 = 0.48kPa LO Floor finishes = 20mm x 24 = 0.48kPa LO partitions allowance = 0.5kPa Allowance for SW of (E) piermeter strip footing = 0.2*0.3m*24 = 1.44kN/m Allowance for SW of (E) piermeter strip footing = 0.2*0.3m*24 = 1.44kN/m Allowance for SW of (E) piermeter strip footing = 2.5m allowance (E) strip footing / lining wall = 0.1m*24*1.4m = 3.36kN/m Floor trib width allowance to (E) strip footing = 2.5m allowance (E) strip footing / lining wall trib width allowance = 1m Dead load demand allowance per new underpinning pile: G = (5.12kPa * 2.5m*1m * 2 levels) = 7.5kN Live load demand allowance per new underpinning pile: Q = (1.5kPa * 2.5m*1m * 2 levels		By: SCS	Page I	No: of
DESIGN LOADINGS: Loadings calculated as per NZS1170Imposed Load Allowances: NZS 1170.1:2002 Residential deck load = 2.0kPa Roof access for maintenance = 0.25kPa Dead Load Allowances: Lightweight roof = 0.5kPaLightweight roof = 0.5kPa External wall = 0.5kPa (Sunroom floor at L1) L1 partitions allowance = 0.5kPaL0 slab = 0.11*24 = 2.64kPa L0 Floor finishes = 20mm x 24 = 0.48kPa L0 partitions allowance = 0.5kPaAllowance for SW of (E) perimeter strip footing = 0.2*0.3m*24 = 1.44kN/m Allowance for SW of (E) pile = 0.3*0.3m*24* 2.25m long = 4.86kN Allowance for SW of (E) lining wall = 0.1m*24*1.4m = 3.36kN/mFloor trib width allowance to (E) strip footing = 2.5m allowance (E) strip footing / lining wall trib width allowance = 1mDead load demand allowance per new underpinning pile: G = (5.12kPa x 2.5m*1m) + (2.5*1m) + (4.8*1m) + 4.86 = 25kNLive load demand allowance per new underpinning pile: Q = (1.5kPa *2.5m*1m * 2 levels) = 7.5kN DURABILITY Exposure category A2 to NZS3101 table 3.1 = Surfaces in contact with the	PILE DESIGN:			
Loadings calculated as per NZS1170 Imposed Load Allowances: NZS 1170.1:2002 Residential floor load = 1.5kPa Residential deck load = 2.0kPa Roof access for maintenance = 0.25kPa Dead Load Allowances: Lightweight roof = 0.5kPa External wall = 0.5kPa x 5m = 2.5kN/m (Ground to roof) Lightwi timber floor = 0.5kPa (Sunroom floor at L1) L1 partitions allowance = 0.5kPa L0 slab = 0.11*24 = 2.64kPa L0 slab = 0.11*24 = 2.64kPa L0 Floor finishes = 20mm x 24 = 0.48kPa L0 partitions allowance = 0.5kPa Allowance for SW of (E) peimeter strip footing = 0.2*0.3m*24 = 1.44kN/m Allowance for SW of (E) pile = 0.3*0.3m*24* 2.25m long = 4.86kN Allowance for SW of (E) pile = 0.3*0.3m*24* 2.25m long = 4.86kN Allowance for SW of (E) strip footing = 2.5m allowance (E) strip footing / lining wall trib width allowance = 1m Dead load demand allowance per new underpinning pile: G = (5.12kPa x 2.5m*1m) + (2.5*1m) + (4.8*1m) + 4.86 = 25kN Live load demand allowance per new underpinning pile: Q = (1.5kPa * 2.5m*1m * 2 levels) = 7.5kN LOAD COMBINATIONS 1.2G+1.5Q = 41kN 1.35G = 34kN DURABILITY Exposure category A2 to NZS3101 table 3.1 = Surfaces in contact with the	DESIGN LOADING	<u>S:</u>		
Imposed Load Allowances: NZS 1170.1:2002Residential floor load = 1.5kPaResidential deck load = 2.0kPaRoof access for maintenance = 0.25kPaDead Load Allowances:Lightweight roof = 0.5kPaExternal wall = 0.5kPa x 5m = 2.5kN/m (Ground to roof)Lightweight roof = 0.5kPaExternal wall = 0.5kPa x 5m = 2.5kN/m (Ground to roof)Lightweight roof = 0.5kPaL0 slab = 0.11*24 = 2.64kPaL0 slab = 0.11*24 = 2.64kPaL0 prive for SW of (E) perimeter strip footing = 0.2*0.3m*24 = 1.44kN/mAllowance for SW of (E) perimeter strip footing = 0.2*0.3m*24 = 1.44kN/mAllowance for SW of (E) pile = 0.3*0.3m*24* 2.25m long = 4.86kNAllowance for SW of (E) pile = 0.3*0.3m*24* 2.25m long = 4.86kNAllowance for SW of (E) pile = 0.3*0.3m*24* 2.25m long = 4.86kNAllowance for SW of (E) ining wall = 0.1m*24*1.4m = 3.36kN/mFloor trib width allowance to (E) strip footing =2.5m allowance(E) strip footing / lining wall trib width allowance = 1mDead load demand allowance per new underpinning pile: G = (5.12kPa x 2.5m*1m) + (2.5*1m) + (4.8*1m) + 4.86 = 25kNLive load demand allowance per new underpinning pile: Q = (1.5kPa * 2.5m*1m * 2 levels) = 7.5kNLOAD COMBINATIONS 1.2G+1.5Q = 41kN1.2G+1.5Q = 41kN1.3G = 34kNDURABILITY Exposure category A2 to NZS3101 table 3.1 = Surfaces in contact with the	Loadings calculated	as per NZS1170		
Dead Load Allowances:Lightweight roof = 0.5kPaExternal wall = 0.5kPa x 5m = 2.5kN/m (Ground to roof)Lightwit timber floor = 0.5kPa (Sunroom floor at L1)L1 partitions allowance = 0.5kPaL0 slab = 0.11*24 = 2.64kPaL0 Floor finishes = 20mm x 24 = 0.48kPaL0 partitions allowance = 0.5kPaAllowance for SW of (E) perimeter strip footing = 0.2*0.3m*24 = 1.44kN/mAllowance for SW of (E) perimeter strip footing = 0.2*0.3m*24 = 1.44kN/mAllowance for SW of (E) pile = 0.3*0.3m*24* 2.25m long = 4.86kNAllowance for SW of (E) lining wall = 0.1m*24*1.4m = 3.36kN/mFloor trib width allowance to (E) strip footing =2.5m allowance(E) strip footing / lining wall trib width allowance = 1mDead load demand allowance per new underpinning pile:G = (5.12kPa x 2.5m*1m) + (2.5*1m) + (4.8*1m) + 4.86 = 25kNLive load demand allowance per new underpinning pile:Q = (1.5kPa *2.5m*1m) * 2 levels) = 7.5kNLOAD COMBINATIONS1.2G+1.5Q = 41kN1.35G = 34kNDURABILITYExposure category A2 to NZS3101 table 3.1 = Surfaces in contact with the	Imposed Load Allo Residential floor loa Residential deck loa Roof access for mai	wances: NZS 1170.1:2002 d = 1.5kPa id = 2.0kPa ntenance = 0.25kPa		
Lightweight roof = 0.5kPa External wall = 0.5kPa x 5m = 2.5kN/m (Ground to roof) Lightwit timber floor = 0.5kPa (Sunroom floor at L1) L1 partitions allowance = 0.5kPa L0 slab = 0.11*24 = 2.64kPa L0 Floor finishes = 20mm x 24 = 0.48kPa L0 partitions allowance = 0.5kPa Allowance for SW of (E) perimeter strip footing = 0.2*0.3m*24 = 1.44kN/m Allowance for SW of (E) pile = 0.3*0.3m*24* 2.25m long = 4.86kN Allowance for SW of (E) pile = 0.3*0.3m*24* 1.4m = 3.36kN/m Floor trib width allowance to (E) strip footing =2.5m allowance (E) strip footing / lining wall trib width allowance = 1m Dead load demand allowance per new underpinning pile: G = (5.12kPa x 2.5m*1m) + (2.5*1m) + (4.8*1m) + 4.86 = 25kN Live load demand allowance per new underpinning pile: Q = (1.5kPa *2.5m*1m * 2 levels) = 7.5kN LOAD COMBINATIONS 1.2G+1.5Q = 41kN 1.35G = 34kN DURABILITY Exposure category A2 to NZS3101 table 3.1 = Surfaces in contact with the	Dead Load Allowa	nces:		
L0 slab = $0.11*24 = 2.64kPa$ L0 Floor finishes = $20mm \times 24 = 0.48kPa$ L0 partitions allowance = $0.5kPa$ Allowance for SW of (E) perimeter strip footing = $0.2*0.3m*24 = 1.44kN/m$ Allowance for SW of (E) pile = $0.3*0.3m*24*2.25m$ long = $4.86kN$ Allowance for SW of (E) lining wall = $0.1m*24*1.4m = 3.36kN/m$ Floor trib width allowance to (E) strip footing = $2.5m$ allowance (E) strip footing / lining wall trib width allowance = $1m$ Dead load demand allowance per new underpinning pile: G = $(5.12kPa \times 2.5m*1m) + (2.5*1m) + (4.8*1m) + 4.86 = 25kN$ Live load demand allowance per new underpinning pile: Q = $(1.5kPa * 2.5m*1m * 2 \text{ levels}) = 7.5kN$ LOAD COMBINATIONS 1.2G+1.5Q = 41kN 1.35G = 34kN DURABILITY Exposure category A2 to NZS3101 table $3.1 =$ Surfaces in contact with the	Lightweight roof = 0 External wall = 0.5k Lightwt timber floor L1 partitions allowar	.5kPa Pa x 5m = 2.5kN/m (Ground to = 0.5kPa (Sunroom floor at L1 nce = 0.5kPa	o roof))	
Allowance for SW of (E) perimeter strip footing = $0.2*0.3m*24 = 1.44kN/m$ Allowance for SW of (E) pile = $0.3*0.3m*24*2.25m$ long = $4.86kN$ Allowance for SW of (E) lining wall = $0.1m*24*1.4m = 3.36kN/m$ Floor trib width allowance to (E) strip footing = $2.5m$ allowance (E) strip footing / lining wall trib width allowance = $1m$ Dead load demand allowance per new underpinning pile: $G = (5.12kPa \times 2.5m*1m) + (2.5*1m) + (4.8*1m) + 4.86 = 25kN$ Live load demand allowance per new underpinning pile: $Q = (1.5kPa \times 2.5m*1m * 2 \text{ levels}) = 7.5kN$ LOAD COMBINATIONS 1.2G+1.5Q = 41kN 1.35G = 34kN DURABILITY Exposure category A2 to NZS3101 table $3.1 = Surfaces$ in contact with the	L0 slab = 0.11*24 = L0 Floor finishes = 2 L0 partitions allowa	2.64kPa 20mm x 24 = 0.48kPa nce = 0.5kPa		
Floor trib width allowance to (E) strip footing =2.5m allowance (E) strip footing / lining wall trib width allowance = 1m Dead load demand allowance per new underpinning pile: G = (5.12kPa x 2.5m*1m) + (2.5*1m) + (4.8*1m) + 4.86 = 25kN Live load demand allowance per new underpinning pile: Q = (1.5kPa *2.5m*1m * 2 levels) = 7.5kN LOAD COMBINATIONS 1.2G+1.5Q = 41kN 1.35G = 34kN DURABILITY Exposure category A2 to NZS3101 table 3.1 = Surfaces in contact with the	Allowance for SW o Allowance for SW o Allowance for SW o	f (E) perimeter strip footing = 0 f (E) pile = 0.3*0.3m*24* 2.25r f (E) lining wall = 0.1m*24*1.4).2*0.3m*24 = 1.44kN/ n long = 4.86kN m = 3.36kN/m	m
Dead load demand allowance per new underpinning pile: G = (5.12kPa x 2.5m*1m) + (2.5*1m) + (4.8*1m) + 4.86 = 25kN Live load demand allowance per new underpinning pile: Q = (1.5kPa *2.5m*1m * 2 levels) = 7.5kN LOAD COMBINATIONS 1.2G+1.5Q = 41kN 1.35G = 34kN DURABILITY Exposure category A2 to NZS3101 table 3.1 = Surfaces in contact with the	Floor trib width allov (E) strip footing / lir	vance to (E) strip footing =2.5r ing wall trib width allowance =	n allowance : 1m	
Live load demand allowance per new underpinning pile: Q = (1.5kPa *2.5m*1m * 2 levels) = 7.5kN LOAD COMBINATIONS 1.2G+1.5Q = 41kN 1.35G = 34kN DURABILITY Exposure category A2 to NZS3101 table 3.1 = Surfaces in contact with the	Dead load demand G = (5.12kPa x 2.5r	allowance per new underpinni n*1m) + (2.5*1m) + (4.8*1m) +	ng pile: · 4.86 = 25kN	
LOAD COMBINATIONS 1.2G+1.5Q = 41kN 1.35G = 34kN DURABILITY Exposure category A2 to NZS3101 table 3.1 = Surfaces in contact with the	Live load demand a Q = (1.5kPa *2.5m*	llowance per new underpinnin 1m * 2 levels) = 7.5kN	g pile:	
DURABILITY Exposure category A2 to NZS3101 table 3.1 = Surfaces in contact with the	LOAD COMBINATI 1.2G+1.5Q = 41kN 1.35G = 34kN	ONS		
ground (in non-aggressive soils). Min cover as per Table 3.6 = 30mm for 30MPa concrete A2, 50yr design life. Choose 50mm cover.	DURABILITY Exposure category A ground (in non-aggre Min cover as per Tal Choose 50mm cover	12 to NZS3101 table 3.1 = Sur essive soils). Sile 3.6 = 30mm for 30MPa cor r.	faces in contact with th ncrete A2, 50yr design	ne life.

Job Number: 1845

	Job Name: 1A SEAVI	EW RD, PAIHIA	
OCTURES	Subject: FOUNDAT	TION REMEDIAL WORKS	
	By: SCS	Page No:	of
PILE DESIGN:			
450mm diam bored	insitu RC piles		
Ag = 0.15e6mm2			_
As min = 0.8% * Ag	= 1272mm2 (CL14.3.6.5)	
Try D16 longitudina	Ibars		
Min number of bars	= 1272 /201 = 6.33 bars		
$M^* = 41 kN * 0.7 m =$	30kNm ULS		
$\Phi Mn = 75 kNm$ with	8-D16's longitudinal stee	I. R10 links at 200c/c. 50mm cover	
all round, 30MPa no	ormal concrete.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_
M*/Conceit/ 20/7	- 400/ utilization - 1000	V Therefore OK	
ivi /Capacity = $30/7$	0 = 40% utilisation < 100%		
See GEN-COL cald	ulation below.		
	Gen	n-Col	_
	Analysis of Reinforce Licensed	ed Concrete Columns to: SESOC	
lob number (or name)	1 Seaview Rd Paihia		_
Column number:			
User name : OEM <u>Concrete prop</u>	erties:		
Rectangular stress blo	x as defined by NZS 3101:20	06.	
Concrete compression	stress coefficient, $a1 = 0.85$	a	
Compression zone der	th coefficient, B1 = 0.85		
Concrete maximum str	ain = 0.0030		
Steel propertie	<u>s:</u>		
Steel modulus of elast	city = 200 000 MPa		
Steel yield strength = 3	00.0 MPa		
Dimensions of	the column section:		
Circular section. Diameter = 450.0 mm			_
Clear cover to ties = 50	.0 mm		
			_
Results:			
Load combination num	ber 1 : or Phi = 0.85		
Phi Axial load = 0.8 kN	Phi Mx = 74.7 kNm. Phi My	= 0.0 kNm	
Required reinforcemer	t ratio = 0.01011, Required re	einforcement area = 1607.1 mm2	
Initial reinforcement ra	io = 0.01010, Initial reinforcer	ment area = 1605.5 mm2	
Initial reinforcement ra	io scaled by = 1.0000		
Skew angle = 0.0000	D, Target moment ratio = N/A ees NA depth = 78.1 mm		
Force (unfactored) car	ied by concrete = 400.5 kN		
Force (unfactored) car	ied by reinforcement = -399.6	kN	
Axial load eccentricity:	ex = 0.0 mm, ey = 93375.0 m 	nm	
The analysis has been	finished.		

2/03/2022

Date

	Job Number: 1845	Date 2/03/20	022
	Job Name: 1A SEAVIEW RD, PAIHIA		
TURES	Subject: FOUNDATION REMEDIAL V	WORKS	
	By: SCS	Page No:	of
PILE DESIGN:			_
Check shear in p	bile: CL10.3.10.5		
laopt min steer	= RTUS at TSOMM C/C, OK by Inspection		
50 diam pile Ol	K by inspection for ULS demand of 41kN		
			-
HECK DOWEL	BARS		-
Design reduced ult	imate concrete edge shear capacity, ØV _{urc}		
$\emptyset V_{uc} = \emptyset V_{uc} \cdot X$	(vc . X _{vd .} X _{va .} X _{vn} . X _{vs}		
Try HD16 rebar	dowels x 500long with EPCON C6 with 150mr	n embedment	
Phi Vuc – 12kN	(e - 90mm)		-
Xvc = 0.91 (for 1	fc'=30MPa)		
Xvd = 2.0			
Xva = 0.7 (e = 9 Xvn = 0.84 (n =	40, a = 120)		
Xvn = 0.84 (n = Xvs = 1.0 (not c	4, a/e = 1.33) orner)		
Therefore, Phi.\	/urc = 12.8kN * 4 anchors = 51kN > 41 ULS De	emand OK	_
			_
			_
Therefore ac	lopt 450mm Φ bored reinforced concrete piles		
6-D16 longit	udinal bars, R10 links @ 150c/c, 30MPa Norma	al concrete	-
use 4-HD16	dowel bars x 500long. Drill and epoxy with 150	0mm	-
embedment	EPCON C6 or equivalent.		
E Une new pile	e per existing pile, except at (E) P3 & P4 which ach other	are paired	_
			-
			_
			-

Job Number: 1845

<u>C</u>	7 Job	Name:	1A SE	AVIEW	RD, PA	IHIA				
	Sub	oject:	FOUN	DATION	REME	DIAL W	ORKS			
	By:	SCS					Page	e No:	c	of
TE DE	SIGN:									
pan be	etween tir	nber po	les in tii	mber ret	aining v	valls.				
					J					
<u>.</u> th pres	sure = 1′	1.5kPa (given)							
= 700n	nm face o	of pole to	o face c	of pole.						
nm wid 0.4*0.7	e strip 7*0.7/8 =	0.28kNi	n							
0.85									0.05	
500	MPa							alpha1	0.85	
400	IVIPa					Mor	ont radict	ribution -	0.80	(0.2 - 20%)
100	mm		Doese	lement cor	tribute to	lateral str	enoth of s	tructure =	N	V or N
50	mm		DUESE	iement coi	infoure to	laterarsti	min As to	93871=	0.0028	JULIN
46,95	mm					reduced	min As to	9.3.8.2.3 =	0.001032	1 = N/A
rcement										
6.1	mm diam	min rei	nf ratio =	0.00103	0.10%	Reduced I	MIN As to :	9.3.8.2.3		
29.2	mm2	max rei	nf ratio =	0.017734	1.77%					
2	bars in tens	ion								
58	mm2	rei	nf ratio =	0.0031	0.31%	STEEL RAT	по ок			
1.1	kNm									
0.28	kNm	25% 1	Itilisation							
	1.61	kN								
ty =										
0.85	Conservat	ive assumi	ng <10mm	aggregate	2					
	Ignore axi	al effects (d	ompressi	on is benef	icial)					
1.00		in Aumin		Y						
1.00) Is A	v > Av min	IN.	TOTIN						
0.003) /s A 3 1 SORT(fc') :	v > Av min 0.55	MPa	TOPIN						
1.00 1.00 0.003 0.101 Shear area) /s A 3 1. SQRT(fc') : a. Av=	v > Av min 0.55 18780	MPa mm2	allowing	for cover					
1.00 1.00 0.003 0.101 Shear area) /s A 3 1 SQRT(fc') : a, Av= vc =	v > Av min 0.55 18780 0.79	MPa mm2 MPa	allowing	for cover					
1.00 1.00 0.003 0.101 Shear area) /s A 3 L SQRT(fc') : a, Av= vc = Vc =	v > Av min 0.55 18780 0.79 14.9	MPa mm2 MPa kN	allowing	for cover					
	TE DE pan be th pres = 700n nm wid 0.4*0.7 0.85 500 30 400 100 50 46.95 rcement 6.1 29.2 2 58 1.1 0.28	By: TE DESIGN: pan between tin pan between tin th pressure = 1 = 700mm face of m wide strip 0.4*0.7*0.7/8 = 0.85 500 MPa 30 MPa 30 MPa 400 mm 100 mm 50 mm 46.95 mm rcement 6.1 mm diam 29.2 mm2 2 bars in tens 58 mm2 1.1 kNm 0.28 kNm 1.61 ry =	By: SCS TE DESIGN: pan between timber pole th pressure = 11.5kPa (= 700mm face of pole to m wide strip 0.4*0.7*0.7/8 = 0.28kNr 0.85 500 MPa 30 MPa 30 MPa 400 mm 100 mm 50 mm 46.95 mm rcement 6.1 mm diam min rei 29.2 mm2 max rei 2 bars in tension 58 mm2 rei 1.1 kNm 0.28 kNm 25% to 1.61 kN	By: SCS TE DESIGN: pan between timber poles in til th pressure = 11.5kPa (given) = 700mm face of pole to face of m wide strip 0.4*0.7*0.7/8 = 0.28kNm 0.85 500 MPa 30 MPa 400 mm 100 mm 100 mm 20.28kNm rement 6.1 mm diam min reinf ratio = 2.9.2 mm2 max reinf ratio = 2.9.2 mm2 max reinf ratio = 1.1 kNm 0.28 kNm 25% Utilisation 1.61 kN y =	By: SCS TE DESIGN: pan between timber poles in timber ref th pressure = 11.5kPa (given) = 700mm face of pole to face of pole. m wide strip 0.4*0.7*0.7/8 = 0.28kNm 0.85 500 MPa 30 MPa 400 mm 100 mm Does element cor 50 mm 46.95 mm rcement 6.1 mm diam min reinf ratio = 0.00103 29.2 mm2 max reinf ratio = 0.017734 2 bars in tension 58 mm2 reinf ratio = 0.0031 1.1 kNm 0.28 kNm 25% Utilisation 1.61 kN	By: SCS TE DESIGN: pan between timber poles in timber retaining with pressure = 11.5kPa (given) = 700mm face of pole to face of pole. m wide strip 0.4*0.7*0.7/8 = 0.28kNm 0.85 500 MPa 30 MPa 400 mm 100 mm 100 mm 100 mm 29.2 mm2 max reinf ratio = 0.00103 58 mm2 2 reinf ratio = 0.0031 0.31% 1.1 kNm 0.28 kNm 25% Utilisation 1.61 kN y =	By: SCS TE DESIGN: pan between timber poles in timber retaining walls. th pressure = 11.5kPa (given) = 700mm face of pole to face of pole. m wide strip 0.4*0.7*0.7/8 = 0.28kNm 0.85 500 MPa 30 MPa 400 mm Does element contribute to lateral strip 50 mm 46.95 mm reduced in 50 mm 46.95 mm reduced in 29.2 mm2 max reinf ratio = 0.00103 0.10% Reduced in 29.2 mm2 max reinf ratio = 0.001734 1.77% 2 bars in tension 58 mm2 reinf ratio = 0.0031 0.31% STEEL RATION 1.1 kNm 0.28 kNm 25% Utilisation 1.61 kN y=	By: SCS Page TE DESIGN: pan between timber poles in timber retaining walls. th pressure = 11.5kPa (given) = 700mm face of pole to face of pole. nm wide strip 0.4*0.7*0.7/8 = 0.28kNm 0.85 500 MPa 30 MPa 400 mm Moment redist 100 mm Does element contribute to lateral strength of s 50 mm min As to 400 mm Moment redist 100 mm Does element contribute to lateral strength of s 6.1 mm diam min reinf ratio = 0.00103 0.10% Reduced MIN As to : 29.2 mm2 max reinf ratio = 0.001734 1.77% 2 bars in tension 58 mm2 reinf ratio = 0.0031 0.31% STEEL RATIO OK 1.1 kNm 0.28 kNm 25% Utilisation 1.61 kN y= 1.61 kN 1.61 kN 1.61 kN	By: SCS Page No: TE DESIGN: pan between timber poles in timber retaining walls. ith pressure = 11.5kPa (given) = 700mm face of pole to face of pole. nm wide strip 0.4*0.7*0.7/8 = 0.28kNm 0.85 500 MPa alpha1 30 MPa beta1 400 mm Moment redistribution = 100 mm Does element contribute to lateral strength of structure = 50 mm reduced min As to 9.3.8.2.1 = 46.55 mm reduced min As to 9.3.8.2.3 = recement 0.0103 0.10% Reduced MIN As to 9.3.8.2.3 = 6.1 mm diam min reinf ratio = 0.00103 0.10% Reduced MIN As to 9.3.8.2.3 = string reinf ratio = 0.0031 0.31% STEEL RATIO OK 1.1 kNm 0.28 kNm 25% Utilisation 1.61 kN y= 1.61 kN	By: SCS Page No: Contract of the second secon

2/03/2022

Date

From:	Rebekah Buxton <rebekah@northlandgeotech.co.nz></rebekah@northlandgeotech.co.nz>
Sent:	Monday, 28 February 2022 3:55 PM
То:	sam@fns.co.nz
Subject:	RE: lateral earth pressure for shotcrete design

Sorry Sam, We are changing section part way. At this end of the wall we are making it 300SEDs at 1m c/c so pile face to face spacing is 700mm. Please ignore previous email below. No change to lateral pressure.

PRESSURE GIVEN

From: Rebekah Buxton
Sent: Monday, 28 February 2022 3:32 pm
To: sam@fns.co.nz
Subject: lateral earth pressure for shotcrete design

Based on maximum depth of shotcrete of 1.60m with 250SED piles at 1.0m c/c. Maximum lateral at rest earth pressure = 11.5kPa, pile face to pile face spacing 750mm. Can you show a vertical strip drain detail. Thanks AT REST EARTH

Kind Regards

Rebekah Buxton Geotechnical Engineer, MEngNZ

Northland Geotechnical Specialists M: 022 304 1171 W: <u>www.northlandgeotech.co.nz</u>

PRODUCER STATEMENT – PS1 DESIGN

	DESIGN				
	BUILDING CODE CLAUSE(S): B1 ISSUED BY: SCS Structures Ltd (Engineering Design Firm) EO: Jane Banfield]	JOB NUMBER: 1845]
Σ	(Dwner/Developer))
5	O BE SUPPLIED TO: Far North District Council]
52	N RESPECT OF: Foundation remedial works)
120	(Description of Building Work)				
/07	T: 1A Seaview Road]
2	Address, Town/City)				-
- ი	EGAL DESCRIPTION: JLUI Z DP 124 280				1
of 12	e have been engaged by the owner/developer referred to above to tructural engineering design	o provi	de (Extent of Engagement):		1
ΣÌ	respect of the requirements of the Clause(s) of the Building Code s	specifie	ed above for Part only	, as spe	cified in the
29	hedule, of the proposed building work.				
D D	be design carried out by us has been prepared in accordance with:				
'	• Compliance documents issued by the Ministry of Busines	s. Inno	vation & Employment (Verif	ication me	hod/accentable
38/	solution) B1/VM4]and/or;
118	Alternative solution as per the attached Schedule.				
BC-2022	The proposed building work covered by this producer statement is d with the specification, and other documents set out in the Schedule.	lescribe	ed on the drawings specified	in the Scł	nedule, together
Ē	 Site verification of the following design assumptions: Subsc 	oil conc	litions are as expected.].
Jent	All proprietary products meeting their performance specific	ation r	requirements;		
un	believe on reasonable grounds that:				
00	• the building, if constructed in accordance with the drawing:	s, spec	ifications, and other docume	nts provid	led or listed in the
ent D	 Schedule, will comply with the relevant provisions of the Bu the persons who have undertaken the design have the nece 	uilding essary (Code and that; competency to do so.		
Cons	Irecommend the CM 4 level of construction monitoring .				
b b	(Name of Engineering Design Professional) Sam Chapman-Smith			, am:	
din	• CPEng number 230 257				
nil	and hold the following qualifications B.E.(Hons) Civil				
Ш П	he Engineering Design Firm holds a current policy of Professional Ir	ndemn	ity Insurance no less than \$2	00,000	
ove	The Engineering Design Firm is not a member of ACE New Zeal	and.			
ňď	GNED BY (Name of Engineering Design Professional): Sam Chapma	an-Smit	th		
Ă	Signature below):				
FNDC -	SRES				
	ON BEHALF OF (Engineering Design Firm): SCS Structures 1td			Date:	10/03/2022

Note: This statement has been prepared solely for the Building Consent Authority named above and shall not be relied upon by any other person or entity. Any liability in relation to this statement accrues to the Engineering Design Firm only. As a condition of reliance on this statement, the Building Consent Authority accepts that the total maximum amount of liability of any kind arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in tort or otherwise, is limited to the sum of \$200,000.

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent.

SCHEDULE to PS1

Please include an itemised list of all referenced documents, drawings, or other supporting materials in relation to this producer statement below:

SK-SE-000 rev 1 SK-SE-001 rev 1 SK-SE-002 rev 1 SK-SE-003 rev 1

GUIDANCE ON USE OF PRODUCER STATEMENTS

Information on the use of Producer Statements and Construction Monitoring Guidelines can be found on the Engineering New Zealand website

https://www.engineeringnz.org/engineer-tools/engineering-documents/producer-statements/

Producer statements were first introduced with the Building Act 1991. The producer statements were developed by a combined task opmmittee consisting of members of the New Zealand Institute of Architects (NZIA), Institution of Professional Engineers New Zealand (now Engineering New Zealand), Association of Consulting and Engineering New Zealand (ACE NZ) in consultation with the Building (ficials Institute of New Zealand (BOINZ). The original suite of producer statements has been revised at the date of this form to ensure standard use within the industry.

ne producer statement system is intended to provide Building Consent Authorities (BCAs) with part of the reasonable grounds ecessary for the issue of a Building Consent or a Code Compliance Certificate, without necessarily having to duplicate review of design or ponstruction monitoring undertaken by others.

FS1 DESIGN Intended for use by a suitably qualified independent engineering design professional in circumstances v here the BCA accepts a producer statement for establishing reasonable grounds to issue a Building Consent;

FS2 DESIGN REVIEW Intended for use by a suitably qualified independent engineering design review professional where the ECA accepts an independent design professional's review as the basis for establishing reasonable grounds to issue a Building Consent;

S3 CONSTRUCTION Forms commonly used as a certificate of completion of building work are Schedule 6 of NZS 3910:2013 r Schedules E1/E2 of NZIA's SCC 2011²

54 CONSTRUCTION REVIEW Intended for use by a suitably qualified independent engineering construction monitoring professional ho either undertakes or supervises construction monitoring of the building works where the BCA requests a producer statement prior to suing a Code Compliance Certificate.

nis must be accompanied by a statement of completion of building work (Schedule 6).

The following guidelines are provided by ACE New Zealand and Engineering New Zealand to interpret the Producer Statement.

Competence of Engineering Professional

This statement is made by an engineering firm that has undertaken a contract of services for the services named, and is signed by a person authorised by that firm to verify the processes within the firm and competence of its personnel.

The person signing the Producer Statement on behalf of the engineering firm will have a professional qualification and proven current competence through registration on a national competence-based register such as a Chartered Professional Engineer (CPEng).

Membership of a professional body, such as Engineering New Zealand provides additional assurance of the designer's standing within the profession. If the engineering firm is a member of ACE New Zealand, this provides additional assurance about the standing of the firm.

Persons or firms meeting these criteria satisfy the term "suitably qualified independent engineering professional".

Professional Indemnity Insurance

As part of membership requirements, ACE New Zealand requires all member firms to hold Professional Indemnity Insurance to a minimum level.

The PI Insurance minimum stated on the front of this form reflects standard practice for the relationship between the BCA and the engineering firm.

Professional Services during Construction Phase

There are several levels of service that an engineering firm may provide during the construction phase of a project (CM1-CM5 for engineers³). The building Consent Authority is encouraged to require that the service to be provided by the engineering firm is appropriate for the project concerned.

Requirement to provide Producer Statement PS4

Building Consent Authorities should ensure that the applicant is aware of any requirement for producer statements for the construction phase of building work at the time the building consent is issued as no design professional should be expected to provide a producer statement unless such a requirement forms part of the Design Firm's engagement.

Refer Also:

- ¹ Conditions of Contract for Building & Civil Engineering Construction NZS 3910: 2013
- ² NZIA Standard Conditions of Contract SCC 2011
- ³ Guideline on the Briefing & Engagement for Consulting Engineering Services (ACE New Zealand/Engineering New Zealand 2004)
- ⁴ PN01 Guidelines on Producer Statements

www.acenz.org.nz www.engineeringnz.org

Job Number <u>.1845</u> PRODUCER STATEMENT PS1

Form 2A

Memorandum from licensed building practitioner: Certificate of design work Section 30C or 45, Building Act 2004

Please fill in the form as fully and correctly as possible.

If there is insufficient room on the form for requested details, please continue on another sheet and attach the additional sheet(s) to this form.

THE BUILDING				
Street address:	1A Seaview Road			
Suburb:	Paihia			
Town/City:	Paihia		Postcode:	0200
THE OWNER(S)				
Name(s): Jane Banfield				
Mailing address: PO Box 417, Paihia, 0247				
Suburb:	Paihia	PO Box/Private Ba	g: 417	
Suburb: Town/City:	Paihia Paihia	PO Box/Private Ba	g: 417 Postcode:	0247
Suburb: Town/City: Phone number:	Paihia Paihia 022 018 3366	PO Box/Private Ba	g: 417 Postcode:	0247

 \bigcirc

 \bigcirc

 \checkmark

BASIS FOR PROVIDING THIS MEMORANDUM

I am providing this memorandum in my role as the: Please tick the option that applies \oslash

 sole designer of all of the RBW design outlined in this memorandum – I carried out all of the RBW design work myself – no other person will be providing any additional memoranda for the project

lead designer who carried out some of the RBW design myself but also supervised other designers – this memorandum covers their RBW design work as well as mine, and **no other** person will be providing any additional memoranda for the project

lead designer for all but specific elements of RBW – this memorandum only covers the RBW design work that I carried out or supervised and the **other** designers will provide their own memorandum relating to their specific RBW design

specialist designer who carried out specific elements of RBW design work as outlined in this memorandum – other designers will be providing a memorandum covering the remaining RBW design work

IDENTIFICATION OF DESIGN WORK THAT IS RESTRICTED BUILDING WORK (RBW)

Sam Chapman-Smith

carried out / supervised the following design work

that is restricted building work

PRIMARY STRUCTURE: B1

Design work that is RBW		Description of RBW	Carried out or supervised	Reference to plans and specifications
Tick Ø if included. Cross Ø if excluded		If appropriate, provide details of the RBW	Tick Ø whether you carried out this design work or supervised someone else carrying out this design work	If appropriate, specify references
All RBW design work relating to B1	×		Carried outSupervised	
Foundations and subfloor framing	¢	Reinforced concrete underpinning piles, and shotcrete infill between selected new retaining wall piles.	Carried out	SCS Structures Ltd Drawings: SK-SE-000 to 003 rev 1.

Design work that is RBW	Description of RBW	Carried out or supervised	Reference to plans and specifications
Tick \bigotimes if included. Cross \bigotimes if excluded	If appropriate, provide details of the RBW	Tick Ø whether you carried out this design work or supervised someone else carrying out this design work	If appropriate, specify references
Walls 🛛 🗙		 Carried out Supervised 	
Roof 🔀		 Carried out Supervised 	
Columns and 😡		 Carried out Supervised 	
Bracing 🔀		 Carried out Supervised 	
Other 🕅 🕅		 Carried out Supervised 	

Design work that is RBW	Description of RBW	Carried out or supervised	Reference to plans and specifications
Tick Ø if included. Cross ૹ if excluded	If appropriate, provide details of the RBW	Tick Ø whether you carried out this design work or supervised someone else carrying out this design work	If appropriate, specify references
EXTERNAL MOISTUR	E MANAGEMENT SYSTEMS: E2		
All RBW design work relating X to E2		 Carried out Supervised 	
Damp proofing 🛛 🗙		 Carried out Supervised 	
Roof cladding or roof cladding X system		 Carried out Supervised 	
Ventilation system (for example, subfloor or cavity)		 Carried out Supervised 	
Wall cladding or wall cladding X system		 Carried out Supervised 	
Waterproofing 🔀		 Carried out Supervised 	
Other 🔀		 Carried out Supervised 	

Design work that is RBW	Description of RBW	Carried out or supervised	Reference to plans and specifications	
Tick ∅ if included. Cross ૹ if excluded	If appropriate, provide details of the RBW	Tick Ø whether you carried out this design work or supervised someone else carrying out this design work	If appropriate, specify references	
FIRE SAFETY SYSTEM	S: C1 - C6			
Emergency warning systems Evacuation and fire service operation systems Suppression or control systems Other		 Carried out Supervised 		
Note: The design of fire safety systems is only restricted building work when it involves small-to-medium apartment buildings as defined by the Building (Definition of Restricted Building Work) Order 2011.				
WAIVERS AND MODIF	WAIVERS AND MODIFICATIONS			
Waivers or modifications	s of the Building Code are required	. 🕙 Yes 🔘 No		
If Yes, provide details of	the waivers or modifications below	/:		
Clause	Waiver/modification required			
List relevant clause numbers of building code	Specify nature of waiver or modification of building code required			
B2	We are not able to cover Clause B2 as there is no effective verification method for B2 contained within the Building Code. However, we supply this letter to confirm that for the structural elements shown in our documentation: Concrete – Concrete strength and covers have been selected in accordance with Section 3 of NZS 3101:Part 1, and Section 4.5 of NZS 3604:2011 as applicable. Exposed Steel Connection Hardware - to NZS3604 exposure classification Zone C			

ISSUED BY

Name and contact details of the licensed building practitioner who is licensed to carry out or supervise design work that is restricted building work.				
Name: Sam Chapman-Smith	LBP or Registration number: 230 257			
The practitioner is a: 🔘 Design LBP 🔘 Registered architect 🕤 Chartered professional engineer				
Design Entity or Company (optional): SCS Structures Ltd				
Mailing address (if different from below):				
Street address/Registered office:				
Suburb:	Town/City: Kerikeri			
PO Box/Private Bag: PO Box 871	Postcode: 0245			
Phone number:	Mobile: 027 702 2008			
After hours:	Fax:			
Email address: sam@scsstructures.co.nz	Website: www.scsstructures.co.nz			

DECLARATION

Sam Chapman-Smith

_ LBP, state that I have applied the skill and care

reasonably required of a competent design professional in carrying out or supervising the Restricted Building Work (RBW) described in this form, and that based on this, I also state that the RBW:

- Complies with the building code, or
- Complies with the building code subject to any waiver or modification of the building code recorded on this form

Signature:

Date:

10/03/2022